! AUSZ 812 MAKTLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/6 1271
N SPONTANEOUS COMPUTATION IN COGNITIVE MODELS. (U)
JUL 76 C RIEGER N0001u-76-c-ou71 !
TR=459

f
|

O —

 —

bl
[lL & = =
e E m I-
T
— Mu 1.8
=

.25 1.4 e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

R

AA032812

N AR T A G A M T T S S R

P SRR ¢

=

s White Seotion (7]
00¢ Wit Saction [f
PNAZROUNCED o

TIEIGABION. b caaniionnnans |

QISTRIBUTION/AVAILABILITY CODES
+ Bist, AVAIL and/or SPECIAL

” ‘;
)
BEy

]

‘§PONTANEOUS COMPUTATION INggOGNITIVE’MODELS o f !
Z ;

} b 4 i 1
I _
(/Cq Chuckgkieger] %
Departme of Computer Science ;
University of Maryland -
College Park, Maryland 20742 kL
b
E
¥
e i o I {
~ /,e/:/‘,wfffu/'?fa ry

[-

ABSTRACT: The engineering and theory of a style of computation in
Which code runs spontaneously (as opposed to on demand) are
develoged. The notion of a spontaneous computation (SC is
defined, briefly surveyed, and compared to other styles of.
computation. Then, in the tirst half of the gaper, a LISP-based®
system which carries out a general theory of SC is described. This
includes: complex trigge;t gatterns, sgﬁganization of SC triﬁget

atterns into associative'’tr gger trees™,’ and the structure of an

C itself. Higher level organization and §9ntr°1‘ﬁ§ SC are then
discussed introducing the notion of a'”’channel®! In the second
half of the paper, some theoretical ideas about how to use SC in
cognitive models, particularly those modeling _ lariguage
comprehension and problem solving, are presented and discussed.
The discussion Egcludes: SC as a, model of non-algorithmic
inference, SCs as'’character followers®!in a story comprehension
systen, sts as subgoal protectors and plan optimizers in a problem
solver, and the relationships among SC, context and frames. In
particular, ideas related to partially triggered SCs, and their
theoretica applications as context-focusers and
motivation-generators are explored. The paper represents one
aspect of a lagser project called the Commonsense Algorithm
Project, and includes as appendices a self-contained system of
LISt code which implements many of the ideas discussed in the
text.

The research described in this report was funded b; the Office of
Naval Research under contract number NP0O014-76C-0477

-
i
\
— g——
A

e o i = .,.A..:_‘_:;.':._.
DIS 1T 'J’I":':ON S“ArEA\lAJ(A K ‘

———— ——

Approved tor public relednsi
Distribution Unlimited

CONTENTS

i 1. INTRODUCTION

1.1 Background

1.2 The CSA Theory and Spontaneous Computation
1.3 SC Basics

1.4 Central Arenas

2. ENGINEERING SPONTANEOUS COMPUTATION

v 2.1 Structure and Organization of SCs
i 2.1.1 Elementary Trigger Patterns
I3 2.1.2 Trigfer Pattern Variables
2.1.3 Complex Trigger Patterns
” 2.1.3.1 Ellipsis: Too Costly
2.1.3.2 Unordered Sets: Not a Big Problem
g 2.1.3.3 What We Did: Conplex CSA Trigger Patterns
; 2.1.4 SC Associative Access Paradigm
3 2.1.5 Trigger Trees
2.1.5.1 Fragmentation
2.1.5.2 Trigger Tree Structure
2.1.5.3 Planting Associative Patterns
2.1.5.4 Discussion and Example
2.1.6 Trigger Tree Terminal Nodes
2.1.7 The Structure of an SC
.1.8 SC Associative Tree Access and Invocation
1 2.1.8.1 Polling and $ALLBINDS
1 2.1.8.2 The SC Body and Invocation Control
¥ .1.9 SCs and Context
2.2 Higher Level Control of Spontaneous Computation

sl

e N VRS

e

R ———

AL

SR iy L

TS USSR

.1 Channels
2.2 Channel Characteristics
2.3 Channel Operation
2.4 Tap Points
+2.5 Possibilities for Channels
2.3 Some Finishing Touches on the Engineering

3. THEORY OF SPONTANEOUS COMPUTATION IN COGNITIVE MODLLS

USTRT ST ST St o 6
NOOUVWFHOWVLNOWWLWORONSWNNUVESWHOY O OOSN -

NI B2 8 B PO LW NN N bt s st st s

o
w

- 3.1 Partially Triggered_ SCs 65

- .1.1 Pressures, Pulses, AND Gates and Memories 66
L 3.1.2 sC Sglitting 69 4
3.1.2.1 SC plitting, Context and Frames 71 ?

.1.2.2 Mechanics of SC Splitting 12

3.1.3 Story Character Followers 73

3.1.4 Curiosity Queues 73
: 3.2 Spontaneous Computation as a Basis of Inference 15 s

3.2.1 Algorithmic Inference 76

3.2.2 Non~Algorithmic Inference 77

o 3.3 Spontaneous Computation in a Plan Synthesizer 78
| 3.3.1 SCs_as Models of CSA Tendencies 18 3
2 18 3.3.2 SC-based Tendencies as Synthesizer Interrupts 81)
® 3.3.3 Subgoal Protection 82 &
A&l 3.3.4 SCs as Constraint Violation Interrupts 84 ;

18 3.3.5 SCs as Plan Optimizers 86

| 3.4 SCs as Hierarchical Situation Characterizers 87

F 1T - 3.5 Other Possible Arenas 88

| 3.5.1 Procedural Attachment 89

? 3.5.2 State of Computation Triggered SC 89

o
—

4., CONCLUSION
REFERENCES
Appendices A, B, C, D, E, F

© w
s N

SPONTANEOUS COMPUTATION IN COGNITIVE MODELS

Chuck Rieger
Department of Computer Science
University of Maryland
College Park, Maryland 20742

1. INTRODUCTION

The computations in any model of intelligence can be classified into two
categories: those which are invoked on demand, and those which occur

spontaneously. A demand-based computation is one which occurs in response to

an explicit request for a service or for information, i.e., a call by name or

a call by pattern. Spontaneous computation on the other hand is computation
which 1is unsolicited; it simply happens in reaction to some condition or set

of conditions becoming true. As such, spontaneous computation will represent
the associative component of any model. It may either interrupt a demand-based
computation, or it may serve to initiate or augment a demand-based

computation.

In models of human intelligence, generic examples of demand-based
computation are problem solving, where a goal is stated then solved, and
deduction, where a question is posed then proved or disproved according to

some logical framework. An example of spontaneous computation in cognitive

models 1s inference, where there 1is no demand source, but where new

information is nevertheless derived from existing information.

Spontaneous conputation typically reacts to states of a data base, or to
changes in a data base (as in MICROPLANNER [SWC1] and CONNIVER [!MS1]), but in
general might react to arbitrary states of computation, including calling

sequences in certain contexts, and so forth.

This paper is about the general thedry and practice of spontaneous
computation (hereafter abbreviated SC), addressed from within the framework of
LISP~based models of intelligence such as are being developed under the style
of modeling known as Artificial Intelligence. In the paper, we will address

it e i

il

o

these major issues:
(1) How ought spontaneous computation to be implemented?
(2) How can it be harnessed in fruitful ways?
(3) What are its theoretical uses in modeling human intelligence?

(4) How can SC be coordinated with demand computations; i.e., when and
how do spontaneous computations interact with demand-based
computation?

(5) What 1s the 'relationship of SC to existing theories of
intelligence; that is, what theories might have SC as their bases?

The paper is intended to be an assessment of some ;tate of the art ideas about
spontaneous computation, together with some (hopefully new) ideas about the
engineering and theoretical utility of such computation in modeling human
intelligence.

SADNASEP. | RGN lhté ait

1.1 Background

There is considerable uncertainty concerning the roles of demand-based
computations (which we will sometimes call "doers"), and spontaneous
computations (which we will sometimes call '"watchers"”) in models of human
intelligence, especially with regard to (a) what classes of cognitive

processes each is best suited for, and (b) how doers and watchers interact and
are coordinated.

The use of SC in models of intelligence in the past has been extensive,
but 1its theoretical role remains largely a mystery, since its theoretical
applications have been piecemeal.

{ ; MICROPLANNER [SWCl], based on Hewitt’s PLANNER [Hl], was probably the
; | first programming language based principally upon the notion of spontaneous
computation. In MICROPLANNER, changes to a central data base are monitored by
a population of watchers, called THANTE and THERASING "theorems". As any
given pattern 1is entered or deleted from the database, some subset of this
population can react, i.e., gain control of the computation after the pattern

has entered or left the database. Computations thus triggered, being

:
i
L 3
i

e

B

arbitrary LISP programs in form, can then do whatever they desire. The
once-radical aspect of such a programming style was of course that more might
happen at run-time than would meet the eye by a simple inspection of the
demand-based flow of control evident in the source listing!

Since MICROPLANNER, CONNIVER [MSl], and a host of other languages with
similar features have evolved with SC as a major component (e.g. QA4 ([R4],
QLISP/INTERLISP [RS1,Tl}, POPLER [Dl1]). Also, there has been considerable
interest in so-called "production" systems, where computation is phrased as a
collection of rewrite rules which, in some systems, can be quite
sophisticated. (See Davis and King [DK2] for a good overview; see also Tesler
et. al. for LISP70 ([T2], and Newell and Simon [}S1].) There are many
similarities between production based systems and spontaneous computation as
we approach it here, because in both paradigms some sort of pattern matching
lies at the base of all computation invocations.

However, MICROPLANNER and production style languages have provided only
the framework for SC; they do not define its theoretical roles in cognitive
modeling. One of the first cognitive theories which relied heavily on SC was
Charniak’s model of children’s story comprehension [Cl]. Charniak’s thesis was
that understanding long segments of meani;gful, connected language is
primarily a matter of planting watchers in response to clues found at one
point in the story, hoping that later on in the story some of those watchers
will spring to 'life at the correct moment to provide an interpretation for
what is happening, and do so in a way that causes interpretation to be a
function of what has come before in the story. In other words, Charniak
employed SC as the basis of a sow/reap, prediction/fulfillment mechanism.

Charniak ran into an understandable combinatorial explosion of sorts;
although his idea was a good one, we feel this approach constituted a basic
theoretical misuse (overuse at least) of spontaneous computation. Later in
the paper, we will make an attempt to delimit - at least abstractly - the

types of presumed human mental processes for which SC seems most appropriate.

More recently, Marcus [Ml] has employed the notion of SC as a model of
English grammar, where rules of syntax are formulated as procedures which run
spontaneously whenever their run conditions are matched by some portion of the
contents of the sentence buffer of the sentence under analysis. Marcus

SRR, <A LGOI . sk $0 3o

oy ey

incorporates a notion of "packets" of SCs to control which subpopulation of
SCs it is that is allowed to react at any given moment.

Although the theoretical merit of this approach over other more
conventional control structures for grammar 1is not yet certain, Marcus
apparently does not experience combinatorial explosions, and 1is able to
express grammar in very modular and clever (1f sometimes run-time obscure!)

forn.

Still more recently, the KRL group (Bobrow, Winograd, et al.) have
incorporated a notion of "procedural attachment" into their system which is
being designed as a base language for expressing cognitive models [BWl].
Procedural attachment is a specific form of spontaneous computation that lies
closer to demand-based computation than most. The MIT LISP machine [Gl] also
uses a very similar notion of procedural attachment. We will have a brief look

at this idea later on.

1.2 The CSA Theory and Spontaneous Computation

Up to this point in our own research, we have been interested in
processes which are most properly classified as doers. The research, called
The Commonsense Algorithm Project, has so far been concerned mainly with the
development of a representation for commonsense cause and effect knowledge,
and the development of an organization which permits us to store and access

large numbers of so-called CSA patterns in useful ways.

The CSA theory has been an attempt to unify some ideas about language
comprehension and problem solving; it is described in [R1], {R2] and [R3].
Because this unification has been our goal, the doers in the existing CSA
model are, abstractly speaking, twofold:

(1) The plan synthesizer, which, given an agent and a goal (expressed
via the set of state and statechange predicates known to the

system), will construct a plan (i.e. build a novel CSA pattern up
from its knowledge store of smaller patterns) which could be
employed by the agent to accomplish the goal; and

(2) The language interpreter, which, given a situation and an action,
will search "backwards" through the knowledge base of CSA patterns

it

oo

and arrive at a most reasonable interpretation (i.e. reason) for
the action in the situation. Interpretations are thus sensitive to
the context defined by the situation; because of this, we feel we

have the kernel of a reasonably powerful story comprehender.

The central theme in these segments of the CSA research has been that
intelligent selection 1is the basic issue with regard to demand-based
computation. The general statement CSA is making is that doers must have good
reasons for solving a given problem, or answering a given question in the way
they decide to do 1it. Our point of view is that intelligent selection at
every step where selection is possible is a necessary (and almost sufficient!)
cornerstone of all human intelligence. We feel that selection is perhaps the
key issue of demand~based computations, and that the development of
computational paradigms in which selection is made central will provide the
foundations for research into human learning. [Rl], [R2] and [R3] present this
point of view and give descriptions of specific aspects of the existing CSA
theory.

However, it was rec" ‘ed early in the CSA research that doers are only

half of the model - that SC is an equally important aspect of some CSA ideas.

It is only recently that we have gotten into the business of SC, and our
, interest was initially motivated by a facet of CSA having to do with mechanism
] ‘ description and simulation [RGl1].

_ In the CSA representation, it is also possible to capture what we call
3 i the "causal topology" of man-made devices. Causal topology means a description
- ; of the cause and effect relationships implied by the structure, and evident in
the operation of a man-made device; this topology can be purely physical, or a

RUNT WP

mixture of social and physical descriptions. We are presently able, for a

e e £ 8 a0

large class or mechanisms, to write a CSA pattern which captures the internal

workings of a device, express this pattern in a form suitable for

communication with the computer model, and store it in memory, integrating it
| into the set of existing patterns for other mechanisms and commonsense
algorithm patterns used by the plan synthesizer.

Since, among others, one of our goals was to be able to use the CSA

pattern describing an arbitrary device as the basis of a mechanism simulator

o — o

i i .
B e

(which in turn 1s scheduled to become the heart of a CAI '"Mechanisms
Laboratory"), we were confronted with the design of a simulator. Inspired by
Sussman’s work with electronic circuit analysis using a simple SC basis [SSl1],
we adopted the following strategy for our simulator: convert the CSA pattern
which describes a mechanism to a population of SC-based procedures, each of
which models one local aspect of the flow of causality within the mechanism,
then light the fuse by presenting the population with a starting pattern, and
watch it go!

The mechanisms simulator is now running (RGl], and represents the first
fully developed application of the CSA SC component (to be described), which

itself has been under development for the past several months.

However, since the initial ideas about the simulator, we have grown more
interested in SC for its own sake, and as the basis of certain classes of

inference in story comprehension (described later in the paper). Also, we have

grown more and more interested in the nature of interactions between

demand~based computation and spontaneous computation, specifically those

between "watchers" and the doers in the existing CSA model.
The main questions are:

(a) What is the division of 1labor between these two computational

paradigns, and

(b) How do demand-based computations and spontaneous computation

constructively coexist and cooperate?

Hence, the remainder of the paper will be about a CSA-independent theory of
spontaneous computation, but motivated from within the specific CSA framework.

The first part is design and engineering; the second part is theory.

1.3 SC Basics

Any SC has two parts: an activation pattern and a body. The activation
pattern is a description of the situation or class of situations to which the
SC will react, i.e. spontaneously run itself. The body is the computation it
performs, most generally an unrestricted LISP computation (although there may

be good reasons in theory for restricting its form).

e =

B e i e DR e S S E Ol e T e A o B

R 2 RSN T S TR RO A LS RIS e R M T xS

7 1
An SC is thus pictured as:
N |
ACTIVATION 1
PATTERN & BODY :
s 1 |
| I "i
1
Display 1.

To illuscrate these two components, consider an SC which embodied a naive

model of earth gravity. Simply put, earth gravity tells us that, as long as we
are close to the earth, whenever an object is unsupported it will begin moving

toward the earth. We would express the activation pattern as:

(UNSUPPORTED X) (object X is unsupported)

AND
(DISTANCE X EARTH RELSMALL) (object X and the earth
are relatively close)

and the body as:

ASSERT: (STATECHANGE LOCATION X EARTH)
(assert that X is moving toward the earth) 3

Display 2. Earth gravity. 4

Of course, this example of an SC is a bit oversimplified, but it gives a
beginning insight into how and why one might employ SCs. In this case, such a
pattern which could run spontaneously when its activation pattern occurred

would be of use in a problem solving system: it could answer '"what-if"

SIS EEINAS e

G

questions, and it could interrupt the demand-based problem solver whenever it
has left an object in an unsupported condition, or it could reconstruct the

probable location of an object which had been left unsupported, and so on.

The basic control for an SC is thus quite simple conceptually observe-
react. Of course, if the SC’s activation pattern contains variables or if it
is complex in ways to be considered shortly, there are some interesting
questions about control. There are also some interesting questions about how
the SC ought to be queued before running in case there are numerous SCs who

are attempting to gain control.

1.4 Central Arenas

In the larger picture of an entire system using this style of
couputation, spontaneous computation implies the existence of a possibly large
population of processes which lurk on the edge of a "central arena" of
computation being performed by populations of doers. The metaphor is one of a
fishbowl, so we will elevate this word to the status of para-technical term,
and imagine that some demand-based computation is "fishbowled" by populations

of watchers who can kibbitz, modify, augment or interrupt the main
computation.

These metaphors lead to some interesting questions:

(1) What is the nature of the central arena that SCs watch?

(2) What are the watchers eyes made of?

(3) What parts of the central arena are visible to the watchers?

(4) When should a watcher who thinks it sees something of importance

be allowed to leap into the central arena (gain control)? and
(5) What ought a watcher be able to do, once in control?

The first half of the remainder of the paper will describe the design and

engineering we have done to address these questions within the CSA framework.

e % et S SR L § R PO y s

B DR N iy

2. ENGINEERING SPONTANEOQUS COMPUTATION

2.1 Structure and Organization of SCs

2.1.1 Elementary Trigger Patterns

The eyes of a watcher are commonly called the watcher’s trigger pattern.
A trigger pattern is a description of some aspect of the state of a
computation, i.e., a pattern in the central arena (whatever the arena 1is) to
which to react. In principle, a trigger pattern could range in complexity from
a zero/one signal on a computer interrupt vector up to an instantaneous

description of every particle in the universe!

Since we are approaching the theory from a LISP implementation, a more
modest and natural type of trigger pattern for us is a LISP S-expression, or
generalized list structure. Since S-expressions are the medium in which all
computations are based in LISP, we will have a fairly gemeral SC trigger

pattern definition.**

** This definition will permit access to all '"user level"” aspects of
LISP-based computation. However, it will provide no means by which to base SCs
upon LISP’s background control, e.g. LISP’s internal stacks and other
mechanisms. We will later discuss schemes in which SCs which react to this
level of computation can be expressed.

b}
While, in principle, unrestricted LISP S-expressions would be the most

desirable substrate for trigger patterns, we have developed a storage
technique which is most naturally applied to a mildly restricted class of LISP
S-expressions and will provide nearly the same expressive power. This is the

class of nested n-tuples, where a nested n~tuple <nn> is defined as:

S ———.

T

S

S RSO A TN AT B S o B NINSTRE n s i N AR e o g 3

10

3 <nn> := <constant> | <variable> | (<nn> ... <nn>)

<constant> := <LISP atom>

<variable> := -<LISP atom> (read as a hyphen sign)

Display 3. Definition of a nested n-tuple.

Nested n-tuples built up in this fashion (and then into more powerful

constructions) will permit us to express patterns which we can regard as ~

associative, in the sense that they will have the potential for "matching'", or

-2 "triggering on" (to be defined) patterns of activity in the central arena.

To illustrate, suppose we wish to construct a relatively simple 1
spontaneous computation whose eye, or trigger pattern would react to arena
patterns of the form: "(wake me up when) Someone knows that John loves

E soneone." Then we might write:

: (KNOWS =X (LOVES JOHN ~Y)) **

Display 4, Someone knows that John loves someone.

as this SC’s trigger pattern. Here, by our convention (there are many other

reasonable conventions), =X is a variable, -Y is a variable, and the rest of

the pattern is constant.

** The particular choice of representation (i.e. predicates and form) is

& | of course up to the theorist; we are interested here mainly in the structure
E | of the patterns he employs.

The interpretation of the pattern of Display 4 would be: activate the
body of the SC to which this pattern is attached as trigger pattern whenever a
(& pattern which matches this pattern occurs in the central arena, communicating

to the body the identities of the symbols which were bound to the variables =X

and -Y by the match process. For example, the pattern

S udstste i

(KNOWS MARY (LOVES JOHN RITA))

Display 5. A fact which matches the pattern of Display 4.

would match this pattern, setting -X to MARY, ~Y to RITA.]

R

Now, there are some new questions:

- (1) What is the interpretation of variables?

(2) What kinds of expressive power built up from this simple | 4
definition would be desirable in trigger patterns? :

(3) How ought the system to store a trigger pattern so that it can be

accessed associatively in an efficient manner from among a large

population of SCs?

2.1.2 Trigger Pattern Variables

A variable in an SC trigger pattern 1is essentially a stand-in for a
"don“t-care” part of the trigger pattern. However, since variables can be

regarded as unique individuals (i.e., by using a different name for each

variable in the pattern), they can serve also to restrict the class of objects
{ to which they may be bound, and hence the class of arena patterns to which the
g | trigger will react.

The simplest convention for variable restriction is that variables with

the same name must be bound to the same object when a match to the pattern is
being attempted. For example, if we choose to limit the applicability of the
trigger pattern of Display 4 to only those cases where the person who KNOWs is

E the same person as the person John LOVEs, we might express this as:

(KNOWS =X (LOVES JOHN =X))

Display 6.

e P

o e
RN

2
"

12

0f course, if we choose this convention, either the pattern matcher or the
inherent organization of the trigger pattern associative access mechanism (or

both) must be able to deal with this type of restriction.

But this kind of restriction, which we will call variable identity

restriction, can actually be regarded as a special case of a more powerful
scheme which would allow us to attach arbitrary restrictions on a variable.

Such restrictions could be denoted, e.g., by the form:

(<variable> : <restriction> ... <restriction>)

Display 7. Hypothetical variable restriction syntax.

where each <restriction> would contain references to <variable>. Then, for
example, we could further constrain the trigger pattern about loving in
Display 6 to read: "Someone who hates John knows that John loves his (the
hater’s) sister" by writing:

(KNOWS (~X : (HATES -X JOHN))
(LOVES JOHN (-Y : (SISTER-OF =Y =X))))

Display 8.

0f course, our syntax would need some refining (e.g. to clarify the status of
(MIATES -X JOHN), indicating that it is a query to the system database, rather

than a general LISP computation, and so forth).

Variable identity restriction is a case of this more general scheme,

which we will call variable semantic restriction, because writing =X in more

than one place is logically equivalent to using variables of different names,

but qualifying them so that they must all be lisp EQUAL:

4
3
|
-
A
7
%
3
3
¥
5
R

Gitig - aaeslaagi

cAN &

R R T S T T T T

|
|
{
|
(&
|
1
I
|

(LOVES -X -X) <=> (LOVES -X (-Y : (EQUAL -Y -X))

Display 9. Identity vs. semantic restriction.

(This is assuming that =X will receive a binding prior to =Y in the match

process).

However, there is another logically equivalent way to approach variable
semantic restrictions which will become evident when we consider the
extensions to the basic trigger facility in the next section; so we will not

pursue the notion further here.

2.1.3 Complex Trigger Patterns

In PLANNER and CONNIVER, trigger patterns are kept simple by permitting
no more than one logical bart, and by adopting only forms of the variable
identity restriction technique. Because of this, in MICROPLANNER and
CONNIVER, a trigger pattern will provide an SC with only superficial evidence
that the SC is applicable to an arena situation. Any detailed applicability
tests must be performed as part of the SC’s body, ever though they are
logically part of the trigger condition.

While this approach provides a powerful enough basis for general SC, it
would be more desirable to incorporate increased expressive power in the
trigger. Doing so will amount to moving into the trigger (where it belongs)
computation which would otherwise have to be performed by the body of the SC

after becoming active on the basis of a superficial trigger condition.

In one sense, where the triggering intelligence resides - in the trigger
pattern itself, or in the SC’s body as a set of additional preconditions to be
tested prior to the actual running of the logic of the body proper -~ is simply
a matter of style. However, there are two arguments in favor of moving more

of the triggering intelligence into the trigger pattern:

(1) Conceptually, the trigger and the body have nothing to do with
each other, except for the passing of variable bindings from the

Sl

o

Gias e S

14

trigger to the body at invocation time. If it ever becomes of theoretical
interest to have the system manipulate its own SCs’ trigger patterns and
bodies (say, for "learning"), keeping these two components totally distinct

has obvious advantages.

(2) Computationally, when a population of simple, PLANNER-like
watchers becomes large and many watchers appear to be relevant to
the current situation in the central arena, it may be the case
that many of them are not actually ready to run, but are
requesting to run only to make further relevance tests. From such
tests, they might discover themselves to be irrelevant after all.
On the other hand, other SCs might actually be ready to run and
perforn some useful computation. This poses a problem to the
highcr level arbiters in the system who are trying to decide whom
to‘run, and it also presents potential complications to some
invocation processes which split trigger patterns apart, as

described later in the paper.

For these reasons, we have adopted the view that it is desirable to move
intelligence into the trigger pattern, with the intent of providing more total
conceptual and computational isolation between the trigger and the body.

Let us now consider the types of expressive power we will and will not
need in trigger patterns.

2.1.3.1 Ellipsis: Too Costly

P

There are many conceivable ways to increase the expressive power of S§C
triggers. One obvious extension would be to allow for ellipsis in the
patterns, regarding them more as strings than as 1list structures. For

example, it might be convenient to write trigger patterns such as:

(LOVES ...)
and (... JOHN ... MARY ...)

Display 10.

meaning "match anything that starts with the constant LOVES" and '"match

R DM M TN B R N A N, A A L Y SR o

e i S T B e e T e

15

anything that contains the symbols JOHN and MARY in it (in that order)",

respectively.

While ellipsis might be desirable in principle, we feel that it incurs
nore problems in practice than it 1is worth in the context of a LISP
environment. For ome thing, since ellipses can represent zero or more
unspecified objects, accomodating ellipsis introduces a combinatorial element

into what is otherwise a straightforward (linear) pattern matcher.

Beyond this, if we are writing trigger patterns within an environment
where some theory of representation is providing a general semantic framework
for expressing knowledge, then the utility of ellipsis is not nearly so great

as it is in unrestricted string environments. For example, if we regard LOVES

e

as a predicate, with an 1intentional semantics (as well as an extensional

semantics) of its own rather that simply as a string of five symbols, and if
we adhere to a particular syntax for using it (say, Cambridge Polish
notation), then ellipsis will often stand for something which could have been

T T T——Y

specified more succinctly without ellipsis anyway, e.g.:

3 (LOVES ...) <=> (LOVES -X -Y)

Display 11. Ellipsis in a system with intentional semantics.

So, although there are clearly some cases where it would be convenient to
have ellipsis, we have chosen to reject ellipsis as an extension to the

trigger pattern expressive power.

T R T AR TR, R

{
ji ¢ 2.1.3.2 Unordered Sets: Not a Big Problem
| | T

g Another possible extension would be to provide for the expression and
E - matching of unordered sets in the trigger. Although, wherever a predicate with

intensional semantics is involved we can use a positional structure, there are

cases where we may wish to deal with sets of things whose order is truly of no
consequence. Symmetric predicates and sets whose membership can be
anticipated, but whose order cannot, are cases in point. For example, we might

wish to write a trigger pattern which would be sensitive to the notion "Bill

SO RPNER, T Sl

BRI A

16

is a brother of John", and it would be convenient to have to write only:

(BROTHERS BILL JOHN)

Display 12. Symmetric predicates.

and let some other part of the system worry about the symmetric nature of this
predicate. Or perhaps we would like to react to any pattern in which Mary sees
John, Bill and Pete all at the same time:

(SEE MARY (JOHN BILL PETE))

Display 13. Unordered sets.

again, deferring the problems in matching the unordered set (JOHN BILL PETE)

with some particular ordering to some other part of the system.

The associative access structure for SC trigger patterns we have
developed and will describe will not (conveniently) tolerate this type of
generalization. However, we believe we do not lose any significant expressive
power, since, once again, it is usually possible to reformulate unordered set

matching within an ordered framework:

(SEES MARY (JOHN BILL PETE))

(SEES MARY -X) and (EQUAL-SETS -X “(JOHN BILL PLTE))

Display 14.

where we attach (still in the trigger pattern) the additional restriction on
=X that it match a particular unordered set. The unordered set match would be
carried out by calling a special LISP function, say EQUAL-SETS, to accomplish
the match.

B .-_s';g,\:'!m

R TSRO AR AL o G54 S ST g 4

17 |

Now that we have described two things we have not done, we will describe

what we have done.]

2.1.3.3 What We Did: Complex CSA Trigger Patterns

In addition to some of the generalizations suggested by abstract pattern
matching needs, we will want SC trigger patterns to be of sufficient
expressive power for the types of theoretical uses to which we will wish to
put SCs. Most important in this respect will be a flexibiiity in describing
subtle or complex situations; if triggers are too coarse, then we run the risk
of having too many SCs wake up in any given situation. Therefore, it will be

essential that the SC trigger pattern conventions hamper the theorist as

little as possible when the need arises to express trigger patterns for;

matching complex goings-on in the central arena.

Everything we want in an SC trigger pattern seems to converge on onej
rather simple theme: allow the trigger pattern to be composed of numerous
logical parts, connected via logical predicates. Allow each logical part to
be either

(a) a nested n-tuple pattern which will represent an associative

component of the complex trigger pattern, or

(b) an arbitrary restriction, formulated as a general LISP function
call.

These two components will fill both the need to react spontaneously (t
structural pattern part), and the need to perform more subtle checking prior
to the actual invocation of the associated SC.

We will call any general LISP function call which exists within a triggex
pattern a computable of the trigger pattern. We will want the associati
components of a trigger pattern to become indexed into the system-wide contr
for spontaneous computations, whereas we will want the computables simply
be retained in the pattern to be used at associate~time, but not indexed int

the SC control.

A definition of a more general SC trigger pattern syntax, <tp>, whi

follows from these ideas 1is:

s e R

1 AT P T

<tp> := <assoc> | <computable> | <complex>
<assoc> := (+ <effort> <nn>)
<computable> := <LISP-S-expression>
<complex> := (AND <tp> ... <tp>)

| (OR <tp> ... <tp>)

| (ANY <tp> ... <tp>)

Display 15. The CSA complex trigger pattern syntax.

where <nn> is a nested n-tuple as defined in Display 3, and where it is
understood that <LISP-S-expression> includes all forms except those covered by

<assoc> and <complex> forms.

The semantics of this defin'tion will be as follows: whenever we wish to
designate an associative part of a complex trigger pattern (i.e., one which
will react to activity in the central arena, and which will come tc be indexed
into the associative SC access mechanisms to be described), we will encase it

with the special marker "+", as in:

(+ 1 (LOVES -X MARY))

Display 16. A complex trigger associative component.

Alternatively, any portions of the trigger pattern not so encased will be
interpreted as LISP computables.

Complex patterns of associative parts and computable parts may be built
from the relations AND, OR and ANY. The semantics of an AND condition are that
all its parts must be bound in a consistent way in order for the AND relation
to be true. In an OR relation, at least one of the OR components must be true,
and any variables which come to be bound will reflect the bindings of the
first component of the OR found to be true. The ANY relation provides a way of
forcing as many of the ANY components as possible to be sought (and, hence, as

many bindings as possible to be made); ANY relations are always logically

SEPEUGI SRS eI

19

TRUE. Many other useful relations are imaginable, but we have limited the
present system to these three.

As it will turn out, (+ <effort> <nn>) forms will need to interface with
both the SC associative control and with the system’s deductive and database
components (in a fashion to be described). Therefore, this form will also
serve as a system-wide query form, 1i.e., entry syntax into the deductive
component of the system. The <effort> field, an S-expression that will
evaluate to an integer, will denote the maximum acceptable level of effort to
be expended if the form were to be regarded as a database query (i.e.
deduction). "Effort"” is defined as the number of raw database fetches made.

Often, it will be convenient to include in a complex trigger pattern
deductive queries which are identical to + forms in all respects except that
they are not to be treated as associative components of the trigger pattern.
That is, often we will want to express conditions that must be true before the
SCs computation can be activated, but which themselves cannot initiate the
running of the SC directly, i.e. trigger it. We adopt the convention of

encasing such forms in "-" signs:

(- <effort> <nn>)

Display 17. Non-associative trigger conditioms.

Applying this complex trigger syntax to expressing the pattern we
considered a while back as Display 8, 'Someone who hates John knows that John

loves his (the hater’s) sister', we can now write:

(AND (+ 1 (KNOWS =X (LOVES JOHN =Y)))
(+ 1 (HATES =X JOHN))
(+ 1 (SISTER-OF =Y =X)))

Display 18.

A i Oty e S Y i

i

’-lllIllllllllIllIIllllIIllIIlIIIllllllllIIll—lllllllllllll!llllll-------r

20

Here, we have written a trigger pattern all of whose parts are associative.
This will mean that the pattern will '"nibble" whenever any one of its
components is seen in the central arena. The 1°s in the <effort> field will
indicate that, in the process of attempting to verify that all parts of this
pattern are true after any one part has nibbled, only one unit of effort is to
be expended for each additional part. (This will amount to restricting the

deductive component of the system to one database fetch apiece.)

Note that we now have a vehicle for expressing general forms of variable
semantic restrictions: we simply factor out the restrictions and include thenm

as other AND conditions in the pattern.

If we wished to have the trigger of Display 18 react only to the
"primary" idea, namely, '"Someone knows that John loves someone", then we could

simply make the second and third components non-associative:

(AND (+ 1 (KNOWS -X (LOVES JOHN -Y)))
(- 1 (HATES -X JOHN))
(- 1 (SISTER-OF -Y -X)))

Display 19.

To illustrate a pattern which includes computables, we might attempt to

capture the notion of "unrequited love with a minor" (!) as:

(AND (+ 1 (LOVES =X =Y))
(+ 1 (NOT LOVES =Y =X)) #**
(- 1 (AGE =X -AGEX))
(- 1 (AGE -Y -AGEY))
(#GREATERP -AGEX #18)
(#LESSP -AGEY #18))

Display 20. A complex trigger pattern with computables.

Sl il e S, i s il s i it ol i T " e

SIS ST

21

** Negation in the CSA system is handled as shown here, i.e., in patterns
themselves rather than in the structures which relate patterns. A future paper
will describe the deductive components of the CSA system in more detail.

Here, we have made the notion of unrequited love '"central" by specifying only
the love/not-love parts of the pattern as associative. The ages of the parties
involved are first determined by non-associative database queries, then

compared against the integer #18 ** via the computables.

** Because of the way LISP stores them, we cannot index numeric atoms in
the ways required by our storage structures. For this reason, we prefix
numbers with a # to make them non-numeric. We have a parallel set of
arithmetic functions for these forms.

We have described most of the important points of SC trigger patterns as
they are now defined and implemented in the CSA system, and feel that we have
at least the kernel of a very expressive system. Since we will see more
examples of trigger patterns throughout the paper, we will not dwell on their
form here, but instead now turn to a despription of the associative access

mechanism which is built around this style of complex trigger patterns.

The issues are:

(1) How are the associative components of complex trigger patterns

indexed into a central SC control and access mechanisms?

(2) What is the procedure for determining whether a trigger pattern
has been matched in its entirety (and hence, whose associated SC
body ought to be invoked)?

(3) How ought SCs whose patterns are only gartiallx satisfied to be
handled?
(4) What are the interesting theoretical wuses to which partially

activated SC trigger patterns can be put?

For the remainder of Part I, we will assume that the trigger pattern

TP AOR

i i - SN S e

B e R R S e

v iR |

e

LR 0

L
i
i

22

definition we have given will be at least necessary for any reasonable SC
system, and disregard as best as possible all its shortcomings. This will
enable us to investigate some interesting engineering and theoretical

questions within a specific framework.

2.1.4 SC Associative Access Paradigm

In any given application of spontaneous computation, we would generally
cxpect there to be large populations of SCs, each SC having the type of
complex trigger pattern we have just described. The question therefore is:
how ought such populations of trigger patterns to be organized in a system

that will need to awaken them associatively?

An SC access requirement is fundamentally different from the access
requirement of a database/deductive mechanism, Typically, a
database/deductive component is confronted with a pattern which possibly
contains some variables. The general type of response from a database/
deductive component is a list of ways to fill all the variable positions to
nake the query pattern "true", i.e. to make it correspond with fully constant

patterns in the data base, or with deduced, but still fully constant patterns:

accesses

<pattern with variables> ====w==- > list of possible ways

to satisfy the pattern

Display 21. Database access paradigm.

For example, if we ask the question "Who are lovers?'":

(LOVES =X -Y) ?

Display 22.

we would expect a response having the general form: "Facts G123 and G32

il | ol o S

A
G]
]

ety AR A b B s i ik i S i R A 8 0 S TR b D S s SR s g it e

:

23

indicate, respectively, that (LOVES JOHN MARY) and (LOVES SUE BILL), so I will
return the value G123 with -X=JOHN, -Y=MARY, and the value G32 with -X=SUE and
-Y=BILL."

The SC component on the other hand will be reacting to patterns which are
generally fully constant. It will attempt to locate some subset of the
population of trigger patterns (containing variables) which "cover'", or match

a given fully constant pattern. If we call this subset which associates with a

given constant stimulus the "nibblers", the SC paradigm is:

triggers
<fully constant n~tuple> —-—=—e=-- > collection of nibblers

Display 23. SC access paradigm.

Although it is possible to use one technique for both database and SC
access, it would appear to be more efficient to separate these functions and
to engineer the SC component with a technology different from the standard
database technologies. (See e.g. McDermott ([M2] for a good discussion of
database organization). Because of this, we have developed a special
technique for SC trigger pattern associative access which is distinct from the

standard database access techniques.

2.1.5 Trigger Trees

The organization of CSA SC trigger patterns is based upon a structure we
call a trigger tree (sometimes abbreviated TT). A trigger tree is a central
structure into which all the associative components of all SC trigger patterns
in a given population of SCs can be knit. It will then become possible to
speak 1in terms of 'populations of SCs", meaning a tree of triggers, and in
terms of "planting" the associative components of an SC’s complex trigger in

some trigger tree.

"Planting" the associative parts of a complex SC trigger pattern, C, will

involve:

ro———

e

el

|
1

i

R

e e e

24

(1) fragmenting the complex pattern, C, extracting the list of all its

associative components

(2) storing each associative component of C in a specified trigger

tree

(3) associating with each associative component of C so planted, say
A, 1list, L(A), of other components of C which, together with A,
would cause C to be entirely satisfied.

We will now describe these steps, and the structure of trigger trees.
All the activities about to be described are set in motion in the CSA systen
by calling the function SPLANT:

($PLANT <tp> <sc~body> <tt>)

Display 24. The CSA SC trigger planting function.

i.e. "plant in trigger tree <tt> an SC whose trigger pattern is <tp> and whose

body is <sc-body>." ** We will describe $PLANT in more detail later.

** We have decided to include as appendices the LISP code which
implements the ideas being presented. One could argue about the usefulness of
such a decision, since the contribution of any computer system lies not in its
code, but rather in what it suggests in the theorz. However, much of our
programming has been at a Ievel of detail hat ought not to have to be
repeated by people who are interested in using ideas we describe.

2.1.5.1 Fragmentation

In planting, the complex trigger pattern, composed from AND, OR and ANY
relations, computables and associative parts, must first be decomposed into
its parts. The decomposition must be performed in a way that couples to each
associative component of the pattern a list, L(A), of other parts of the
pattern such that if A union L(A) were satisfied, the entire trigger pattern
would be satisfied, i.e. fully triggered. This will permit the pattern to be

"entered" via any of the associative components, since each associative

R T e T e S e e S UL o N s O D)

25

component will be planted in an associative access trigger tree and will have
a knowledge of which other components of the complex trigger constitute its
L(A). Whenever a stimulus causes A to associate, this L(A) will be called up

in a more goal-directed mode that tries to determine whether or not A union
L(A) has been satisfied.

We will define polling to be that process which, upon some associative

component, A, being triggered, tests the remaining pattern components, L(A).
Polling is of considerable theoretical interest and will be discussed in more
detail later.

The CSA function which, given a trigger pattern <tp>, performs this
fragmentation, is called $FRAGMENT and is called initially by ($FRAGMENT <tp>
NIL). $FRAGMENT accepts a complex trigger pattern as defined in Display 15

and returns a list of the form:

((<al> . <L(al)>)
(<a2> . <L(a2)>)

A

(<an> . <L(an)>))

Display 25. Fragmentation results.

where <al> is the first associative component of the complex pattern, <L(al)>

3{ ! is its associated L(al), and so forth.

The algorithm is recursive and "understands' the semantics of AND, OR and

3 ANY so that it produces the minimum L(A) for each associative component A in
:E g ~ the complex trigger. For example, if $FRAGMENT is called with the trigger

pattern

26

(OR (AND (+ t (LOVES =X JOHN))
(OR (+ 1 (LOVES -X BILL))
(+ 1 (LOVES PETE -X))))
(+ 1 (NOT LOVES =X JACK)))

ot AR} o 1wy i TR S IRy i iint s (o

Display 26.
it will return the list:

1 (((+ 1 (LOVES -X JOHN)) . i.e. al

1 (OR (+ 1 (LOVES -X BILL)) L(al)
(+ 1 (LOVES PETE -X))))

((+ 1 (LOVES =X BILL)) . a2
(+ 1 (LOVES -X JOHN))) L(a2)

((+ 1 (LOVES PETE -X)) . a3
(+ 1 (LOVES =X JOHN))) L(a3)

((+ 1 (NOT LOVES -X JACK)) . ab
NIL)) L(a4)

Display 27. An example fragmentation.

where multiple references to any one subcomponent of <tp> are preserved as

i LISP EQ references. Each associative part on the list so produced will then
be planted the trigger tree specified in the original call to $PLANT.

Planting an associative part, A, will give rise to a unique path in the
trigger tree. At the terminal node of this path we will store a reference to E

the SC of whose complex trigger pattern A is a part, and attach to this

reference L(A) to identify those parts of the original trigger pattern which T
\ nust be polled in order for the complete pattern to be satisfied in case the 1
: complex trigger is entered via A.]

lle turn now to the structure of a trigger tree.

> ‘1A‘,$'”:‘ o :‘;"‘.Z‘I‘l‘

8

2.1.5.2 Trigger Tree Structure

Since triggers arc associative and, given any fully constant nested
n-tuple as stimulus, we want to access all relevant triggers, it would be
desirable to have the triggers share as much common storage and structure as
possible. This will make it more efficient to access relevant triggers in
"parallel” while also conserving space.

A tree i1s a natural for these purposes (see Knuth [Kl], e.g.). Hence,
our thinking developed along the line of a tree structure, in which each path
from the root of the tree to a terminal node corresponds uniquely to some
associative component of some complex trigger. Associative access in this
type of structure amounts to a breadth-first traversal of the entire tree,
dropping from consideration any paths which fail to match at some point. For
any stimulus pattern, P, a traversal of the tree will yield either NIL (no SC
associative components nibble at P), or a 1list of tree terminal nodes
representing the subset of the tree’s associative patterns that fire 1in

response to P.

The structure of a non-terminal node, <tt-nt-node>, in a trigger tree is:

(terminal nodes will be described shortly)

<tt-nt-node> := (<constants> <variables> <complexes> . <parent>)
<constants> := NIL | (<comst-alt> ... <const-alt>)

<const-alt> := (<atom> . <tt-node>)

<variables> := NIL | (<tree-variable> <var-alt> ... <var-alt>)
<var~-alt> := (<var-restriction> . <tt-node>)

<var-restriction> := <tree-var> | FREE

<tree-var> := =X <path>

<complexes> := NIL | (<complex-alt> ... <complex-alt>)
<complex-alt> := (<length> . <tt-node>)

<parent> := <tt-node>

Display 28. Trigger tree non-terminal node syntax.

where a <constant> 1is any LISP atom which is not an SC variable (an atom

Bl ha

i s B G S i s i NS e 3 2

- il

<Ll
E
|

e G e

S

28

prefixed by a hyphen sign in our convention), <path> is a sequence of integers
uniquely 1identifying the position (to be defined) of the non-terminal node in
the tree, and <tt-node> is any trigger tree node. <parent> provides an upward
backlink from each node to its parent, with the parent of the root node being
NIL. Each trigger tree node thus requires three CONS nodes at a minimum:

PAKENT

!

s> o—-—->1'l

l 1 l

CONSTANTS VARIABLES COMPLEXES
Display 29. Trigger tree non-terminal node-.

Besides the parent link, which is used only in the process of removing an

associative pattern from a trigger tree, each non-terminal node consists of

three parts:
(1) constants (indexed by themselves)
(2) variables (indexed by identity restrictions)
(3) conplexes (indexed by length)

Each path from the root to a terminal node in the tree will correspond to a
left-to~right, depth- first traversal of some associative pattern (a nested
n-tuple, possibly containing variables). Each node on any given path in the

tree will therefore correspond to some position within the associative pattern
which that path represents.

There will be two modes of access for trigger trees:

(1) PLANT MODE: given an associative pattern, find (or create) the
path in the pattern tree which represents this trigger, and

(2) ASSOCIATE MODE: given a fully constant stimulus, find all paths to

terminal nodes which satisfy this stimulus, i.e. associatively

—

A AT o, 7 o A il o

GOV AP, R g

T T e T N T e » n

locate all the nibblers.

We visualize each non-terminal trigger tree node graphically as:

/‘?\

\

CONSTANTS'/ \CK!FlEXES

AA A

Display 30. Non-terminal node structure.

A <path> to item X in an associative pattern (nested n-tuple) P is
defined as the list of "go to position i and descend" operations that would be
required in order to move from the entry node of the pattern to X. Rather
than define it formally, we will simply illustrate a path. If the pattern P
is:

(KNOWS JOHN (LOVES MARY (COUSIN PETE)))

Display 31.

then the path to the atom COUSIN in P is (3 3 1), i.e., go to the third
position at the top level, descend, go to the third position at that level,
descend, then go to the first position at that level. By convention, we store
such paths as decimal integers; this restricts us to nested n-tuples of
maximum length about 9 and depth about 10, because of the way integers are
stored on the machine. (This is a trivial aspect of the implementation which

could be changed easily.)

30

2.1.5.3 Planting Associative Patterns

Suppose that we wish now to plant the (in this case fully constant)
associative pattern, P, of Display 31 in a trigger tree, TT. Starting at the
root of TT (if there is no root, or no next node, one will always be created
in PLANT mode), we will descend into TT as we move from left to right,
depth-first in P. As a preview, let us consider what TT would look like after

the entire plant, assuming TT then contained only this one pattern:

=
P d
St
NIL NIL
\
\
A S
NIL
JOHN 2
7 N\
7
e N
NIL NIL NIL
LOVES

This structure arises as follows: The pattern, being complex and of
length 3 at the top level (i.e. (KNOWS JOHN *)), comes to be stored in the
complex field of the root node of TT, grouped with any other existing patterns
of length 3. Descending into P, the first element of the top level list is

T

TSRV R T

Sl e

31

KNOWS, a constant. KNOWS therefore gives rise to a successor out of the second

node of TT from within the constants field.

Moving across to the second element at the top level of P, another
constant, JOHN, is encountered, giving rise to another node similar to the one
for KNOWS. Moving to the third element of P and descending one node in the
tree, a complex, (LOVES ...), is encountered, causing a successor from the

third node of the trigger tree to be sprouted via the complexes field (again,
subindexed by its length, 3). Descending, the first element of this nested

n~tuple, LOVES, gives rise to another node with an edge leading out of its

constants field.

Moving to the second and third elements of the nested list causes the
remainder of the tree to be built up in an analogous manner. Thus, going from
a node to its successor in TT corresponds to moving right one element in P,

and descending into the new element in case it is complex.

A variable at position X in the pattern P being stored in TT will cause
an arc to be created out of the variables field of the node in TT
corresponding to position X in P. Since the trigger tree is serving to unify
many patterns into one structure in which common initial paths are shared, it

is necessary to maintain a uniform variable naming convention.

To ensure a uniform naming convention, as a pattern is stored, each of
its variables is mapped into a variable of a canonical name that is derived
from its position in the pattern being stored. A position is described by a

<path>, as previously defined.

In our convention, if variable V occurs at position R in P, V will be
known within the trigger tree as the variable whose print name is "-X"

concatenated with the path denoting R.

For example, if the pattern to be stored in the tree is

(KNOWS ~X (LOVES =Y =2))

Display 33.

TE S

32

then within the tree the pattern will be known as:

i

(KNOWS -X2 (LOVES -X32 ~X33))

Display 34. Canonical variable naming.

At the terminal node of the tree which corresponds to this pattern, variable

mapping information of the form '"-X2 is actually -X, -X32 is actually -Y, -~X33

is actually -Z" will be stored so that when the pattern is associatively
accessed by a tree traversal in response to some stimulus, original variable

names may be reconstructed and tree variable bindings transferred to the

variables as they are known to the SC of which the tree pattern is a part.

Hé Suppose now that we were to store the pattern of Display 34 with three
' variables in the trigger tree we have begun to construct in Display 32. Then,

the new, augmented tree would be:

33

AS IN DISPLAY 37 fier

Display 35. Trigger tree TT, now containing two associative patterns.

Now we have introduced some variables into TT. When the variables field
of a trigger tree node first becomes non-NIL, the variables field of that node
blossoms from NIL to the form:

(<tree-var> <var-alt> ... <var-alt>)

% s Display 36. Trigger trec node variable field syntax.

where <tree-var> is the variable of canonical name corresponding to the
pattern position the node in the trigger tree represents. Storing the tree 1

R T e

variable in explicit form will make it a simple matter to bind this variable
during assoclative tree accesses.

Trigger trees will permit us to perform variable identity restrictions

34

(as defined earlier) in a very natural way. Associated with each arc,
<var-alt>, out of the variables field of a node in the trigger tree 1is an

identity restriction (denoted as <var-restriction> in the syntax of Display

28). Such a restriction has the form:

+rwcn dexntoaic

<var-alt> := (<var-restriction> . <tt-node>)

<var-restriction> := <tree-var> | FREE %'

Display 37. Variable identity restriction syntax.

and has the following interpretation. At tree application time (i.e. the time

a—k

at which associative patterns are being matched against some stimulus), the
variable’s arc may be followed only if the position in P being currently
natched (i.e. to which the node corresponds) is LISP EQ to the existing
binding of the trec variable named by <trec-var> in the <var-restriction>. By
convention, if the variable has no restriction (i.e. it occurs only once in P,
or this is the first occurrence of it in the left-right, depth-first traversal
on P), instead of a reference to another tree variable, we include as the

<var-restriction> field of <var-alt> the distinguished atom FREE.

This syntax will permit us to discriminate triggers on the basis of
variable identity 1in addition to the structural and constant information
within the pattern. For example, if we now augment the trigger tree, TT, we

have been building with a third, very similar pattern:

(KNOWS =X (LOVES =Y =X))

Display 38.

which becomes:

R Y g o

WO TSR

PR AN s
.

35 F

(KNOWS -X2 (LOVES -X32 -X33))

such that -X33 = ~X2

Display 39.

within the tree, the new tree will be:

I'd ~
P ! o P
I NIL NIL
/I ~

| \-\
X2 NIL
J
//] \\
- t
NIL NIL 3
FREE -X2

AS IN

Dispray 32
Display 40. Introducing some variable identity restrictionms.

NODE K

The variable field of the node marked K in this tree is read as follows:
the arc leading from the restriction denoted by FREE can always be followed

unconditionally at associate-time; additionally, the arc leading from the
restriction denoted by =-X2 can be followed only in the event that the current

position, corresponding to tree variable -X33, is LISP EQ to the existing

36

binding for -X2 (which was established higher in the tree).

As a variables field arc is followed during an associative tree access, a
record of the binding which had to be performed in order to follow the arc
will bc made, and, along with prior existing bindings, is passed to lower
levels of the tree. At the end of a successful traversal to a terminal node,
all tree variables encountered along the traversal path will have bindings.

They can then be translated back into the original names for the various

variables in the pattern the successful path represents, and then passed to
the body of the SC in case the ensuing polling process determines that the SC

can be run.

This concludes tlie discussion of the PLANT mode insertion process.

will describe the associative tree access procedure shortly.

2.1.5.4 Discussion and Example

It should be noted that, because of the length sub-indexing out of the

conplexes field of each node, all surviving paths from some application of a

trigger tree to a stimulus will in fact be paths to a terminal node of the

tree (e.g., the match is guaranteed to be exact, with no possibility for an
unmatched dangling part of the stimulus). Therefore, a trigger tree is a kind

of "perfect" discrimination network.

We should also point out that we have made a decision to include only

variable identity restrictions in the trigger tree, and not general semantic

restrictions. Clearly, we pay something for even identity restrictions both
in space (the <var-alt> fields of each tree node), and in time, since
guaranteeing the equality of variable bindings involves ASSOC searching on a
list of bindings at some point. In [M2] with regard to database organization,
McDermott has argued against making identity restrictions during the first
stages of access, arguing that variable identity restrictions are more
efficiently processed after the initial filtering on constant and structural
bases. However, we feel that the potential pruning effect this has on the

accessing of large trigger trees will be well worth the cost.

It should also be noted that it would be nearly trivial (syntactically)

to include arbitrary semantic restrictions on tree variables simply by

R

G Rl e it e

NP At 9% s Sadind

il i s e N TS L 0 b R i

37

allowing the <tree-var> part of each <var-restriction> to be an arbitrary
S-expression which would have to evaluate non-NIL in order for the associated
arc to be taken. However, here we would agree with McDermott that this type of
variable restriction is better handled after the trigger tree has finished
(e.g., as other components of the complex trigger pattern which are polled
after the initial activation, as discussed earlier), since its path-pruning
contribution would probably be negligible in relation to the amount of

additional run time it would incur.

This more or less completes the syntactic description of trigger trees in
their role as the central associative access structure in the CSA SC

component.

To conclude this section on trigger tree structure, we will build up a
new trigger tree TTl from NIL, illustrating the expressive powers of this data
structure. We will call $PLANT as it is called in the system, but omit (i.e.,
specify as NIL) the SC <body>‘s that would normally be present, and (for the

sake of clarity) use only one-component trigger pafterns, rather than complex

ones.
($PLANT “(+ 1 (LOVES JOHN -X)) (LAMBDA (X) NIL) °“TTl)
($PLANT “(+ 1 (KNOWS -X (LOVES JOHN -X))) (LAMBDA (X) NIL) “TTl)
($PLANT “(+ 1 GRUNDGE) (LAMBDA (X) NIL) °‘TTl)
($PLANT “(+ 1 ~Q) (LAMBDA (X) NIL) °TTl)
($PLANT “(+ 1 (KNOWS -X -Y)) (LAMBDA (X) NIL) °TTl)
(SPLANT “(+ 1 (KNOWS MARY (LOVES -X -Y))) (LAMBDA (X) NIL) °TTl)

Display 41. Building up a trigger tree.

The resulting tree is:

R AR IS APPSRV L BV A0S s Y TR 5 G0 e s 5, R ST o i n ; AR e e

e

38

TTl—\‘

/ ~N
NIL NIL / : e

- | o

o |
FREE deiay - S

-X2

Display 42. Resulting tree.

o P cadahiy ol Srady S i s - " o o ” s " a2z ’
T R e e R sy

R TR T T

:

39

and, by calling the function ($SHOW <trigger-tree>) (Appendix A), we can see
TT1’s LISP manifestation in a formatted form:

($SHOW TT1):

GRUNDGE

(G3 NIL NIL)
(=X = FREE)

(G4 NIL (-Q))
(3)

KNOWS

MARY
(3)
LOVES
(-X32 = FREE)
(-X33 = FREE)
(G6 NIL (-Y -X))

(-X2 = FREE)
(-X3 = FREE)
(G5 NIL (=Y -X))
(3)
LOVES
JOHN
(-X33 = -X2)
(G2 NIL (=X))
LOVES
JOHN
(-X3 = FREE)
(G1 NIL (=X))

Diaglax 43. LISP form of the tree.

2.1.6 Trigger Tree Terminal Nodes

A path in a trigger tree corresponds to one associative part of a complex

LA
o

R e = 4y x e ladd, kg e e Shi ol ol uif SR . . & S P S S 5 HO SR
p: LRI S, S e o Sk dad i et i it =3 ERRE et R B 2 — -

i

40

<

trigger. (Of course, complex triggers which reference the same associative
component will share paths in a trigger tree). Beyond the associative
information inherent in the path to a terminal node, each terminal node of a
trigger tree mnust contain information about what to do in case some stimulus

causes that terminal node to be reached during an associative access.

Specifically, we will require the following information at each terminal g

node in a trigger tree:

(1) a distinctive marking to distinguish the terminal node from a

non-terminal node

and for each spontaneous computation, S, whose complex trigger pattern
includes a reference to the associative component represented by this terminal

node,

(2) a reference to the entity in the system (a LISP GENSYM in our

case) which represents S itself

(3) the polling list, L(A), of other parts of §°s complex trigger
pattern components (produced by $FRAGMENT) which must be polled

and found to be true before S can be invoked, and

e —————

(4) a list of variable mappings which will translate the bindings
{ attached to tree variables to the variables as they are named in

the original declaration of $°s complex trigger pattern.

We thus define a trigger tree terminal, <tt-t-node>, as follows:

<tt-t~-node> := (<parent> SC <sc-ref> ... <sc-ref>)
<sc-ref> := (<sc> <polling=-list> <var-map>)

<sc> := a LISP atom with CSA type '"SC"
<polling-list> := NIL | (<tp> ... <tp>)

<var-map> := NIL | (<variable> ... <variable>)

Display 44. Trigger tree terminal node syntax.

S—

where <tp> is a complex trigger pattern, as defined in Display 15.

'
¢
i
g
!
i
£
i

e i - g
S i SR s S S L 1 s e g A b i S R o R (A S it s ot

i

| 41

i

4

1 To illustrate the form of a trigger tree terminal node, supposc we plant
4 the following complex trigger pattern in an initially null trigger tree TT2,
f calling $PLANT:

3

1 ($PLANT * (AND (+ 1 (LOVES =X -Y))

4 (+ 1 (NOT LOVES -Y -X)))

i " (LAMBDA (X) °DO-NOTHING)

g ‘TT2)

§ Display 45.

(again, specifying a do-nothing ‘body for the time being).

Among other things, $PLANT will create a unique internal symbol to
represent this SC. It is to this symbol that it will attach all the relevant
information about the SC.

Suppose in this case $PLANT decides to name the SC "G1". Then the
resulting trigger tree, TT2, would be as illustrated in Display 46 below, this

time shown complete with all the terminal node information.

AE e i 2. Dia s

NODE N5 “Y <
P ~

5 ~
NIL =
FREE
NODE Nq I'd ~
ROl Sl
NIL - NIL
FREE
ENDPA i’ 'Xq NIL // /
3 o FREE / // 1
L(a): H / / *
' ENDPATH f /
\] —_X. J / o
\) / /
N 4 :
< & |
]
Display 46. Cxample trigger tree terminal node.

(+ 1 (Loves -x -v))
LOVEi e
o
/7

/

NIL— NIL / |
7/ AN
1=

/& 1 (NoT Loves -y -x))

Lot e it

2.1.7 The Structure of an SC

adiiiddal

The SC itself which comes to be created by $PLANT is normally a LISP
GENSY whose property list contains all the relevant information about the SC.
This information is:

SC~PATTERN the complete complex trigger pattern exactly as it was
communicated via the call to $PLANT

SC~BODY the LAMBDA expression of one argument which is the SC’s body;
the single argument will receive a 1list of dotted pairs
representing the bindings which have caused the SC to be

invoked

TREE-LOCS backpointers to a set of trigger tree terminal nodes which
represent the associative components of the SC; these will

be required in case the SC needs to be deleted

In addition to these properties, there 1is a property related to the
context status of the SC, and some properties related to the manner in which

the SC is to be handled at invocation time. The latter will be discussed
later; we will not describe the CSA context mechanism (a fairly

straightforward chronological context scheme) in this paper, other than to

include the code as Appendix D.

2.1.8 SC Associative Tree Access and Invocation

We are now ready to describe the flow of control during an associative

trigger tree access. A trigger tree 1is caused to react to a stimulus by

calling the function $ACTIVATE:

($ACTIVATE <stimulus> <trigger-tree>)

Display 47. Causing an associative access.

For instance, if we want TT2 (as defined in Display 46 above) to react to the
stimulus (LOVES JOHN MARY), we would call:

G o el TS i o s T

(SACTIVATE ‘(LOVES JOHN MARY) “TT2)

Display 48.

Alternatively, it is possible simply to call:

(TT2 °(LOVES JOHN MARY))

Display 49.

since, as any trigger tree is created it is simultaneously defined as a LISP
function (an [XPR) which can '"apply itself" to a given stimulus. This

construction was motivated by some considerations about trigger tree control

which we will come to later.

SACTIVATE is first concerned with locating all SCs which nibble at the

stimulus pattern. To do so, SACTIVATE calls another function, $NIBBLERS, whose
two arguments are the stimulus and the tree. The sequence of events that
occurs in response to this call on $NIBBLERS is as follows: The root node of
the trigger tree, in this case TT2, is accessed, and a test posed: is the
"current object" (initially the entire stimulus, (LOVES JOHN MARY)) a constant
(i.e. LISP atom) or a complex object? In this case, it is a complex, so the
complex field of the root node of TT2 is searched for an arc out representing
complexes of length 3. One is found, namely the node marked N2 in Display 46;
hence, $NIBBLERS descends into the current object, preparing to move left to
right, making the new current object LOVES. Additionally, $NIBBLERS asks

whether there are any variables in the variables field of the root node which w
could bind to the initial current object. In this case, there are no variables j
at all, so no paths begin from the variables field. If some were begun, they - |
would be pursued "in parallel" with the path we will pursue here, until they

either died out or resulted in successful matches.

At N2, having been recursively entered, $NIBBLERS poses the same

G el e A 1

questions: is the current object a constant or a complex? This time, it is the

VT YR R A YT

RALE Bkl adii

LR NG s

T T P A

45

constant LOVES, so the constants field of N2 is consulted to determine whether
there 1s an arc out associated with LOVES; finding one, $NIBBLERS moves to N3
in TT2, simultaneously making the new current object thec next onme to the right
of LOVLS in the pattern, namely JOHN. As before, at N2 $NIBBLERS also tries to
match the current object to any relevant variables, but, finding none, again

pursues only the constant LOVES path.

At N3, the process repeats: is JOHN a constant or a complex? Since it is
constant, but there is no arc out of N3 associated with the constant JOIN, no

path is followed out of the constants field. But this time there is a FRLL
variable to which to bind JOHN, namely -X2. The binding is made, and $NIBBLERS
follows the associated arc to N4, passing the binding just made down to lower

levels of this path. The new current object then becomes MARY.

At N4 an event similar to the event at N3 occurs, namely, -X3 is bcund to
MARY. Then TT2°s single terminal node, N6 is encountered. Because we have
implicitly taken nested complexes’ lengths into consideration in the paths
S$NIBBLERS has followed, we know that $NIBBLERS has a non-dangling match, and

furthermore, that the bindings are:

((-X3 . MARY) (-X2 . JOHN))

Display 50.

(and in fact always in order... the order will turn out to be useful).

SNIBBLERS thus returns with a 1list of trigger tree terminal nodes
representing successful associative paths. With each terminal is associated

the list of bindings that were made along the path.

Next, for each SC reference on the terminal node’s list of SCs of whose

complex trigger pattern this stimulus is a part, $NIBBLERS

(1) associates with each complex trigger pattern variable the relevant
binding, after mapping tree variables into the variables as they
were named in the pattern; in this case, this results in: ((=X .

JOHN) (-Y . MARY))

46

(2) accesses the polling list (associated as L(A) with A= (LOVES =X

-Y)) of remaining conmponents of the complex trigger pattern for
this SC, and instantiates this list, substituting the variables =X
and -Y with their associated constant bindings (i.e. creating an
instantiated copy). It should be noted that in general (but not
in this case), the instantiated result will stiil contain

variables which were part of the complex pattern, but not
nmentioned in the associative component which has given rise to the

polling;

(3) polls the resulting patterns to determine whether the SC is ready

to run.

In the case of this example, the polling will attempt to determine
whether or not it 1is true that (NOT LOVES MARY JOHN) via a call that looks
like:

(+ 1 (NOT LOVES MARY JOHN))

Display 51.

"True" will mean: can the database/deductive components of the system decide
on a truth value for this fact, within the allowed energy budget specified in
the <energy> field of this call as it was specified in the complex trigger

pattern. In this case, since we have limited the budget to exactly one fetch,
the SC will be run if and only if (NOT LOVES MARY JOHN) is explicitly in the

database.

This interaction between association on the one hand via trigger trees,
and polling on the other hand via the deductive components of the system will

provide a basis for some intriguing theoretical interactions; we will discuss

this more in the second half.

2.1.8.1 Polling and $ALLBINDS

The code which, given some component of the complex trigger to be polled,

Wy

47

carries out the polling (search for ways to instantiate the component’s
variables 1in order to make it true), is called $ALLBINDS. This function is
basically no more than a control and accumulating function which drives the

deductive component in ways specified by the pattern.

SALLBINDS will accept any complex trigger pattern, <tp>, as defined
earlier, and control a sequence of calls on the database/deductive components
of the system, accumulating a list of ways the pattern can be caused to become
true (or, in the case of a pattern with no variab <, compute the truth of the

pattern).

As such, $ALLBINDS is of general theoretical wutility for converting
opaque references (references by features) called descriptors in the CSA

system, into identity references (pointers to internal memory tokens and

concepts within the CSA system). Given a complex descriptor, $ALLBINDS will

return either NIL, in case there is no way to satisfy the complex pattern, or

the form:

(T <binding-list> ... <binding=-list>)

Display 52. $ALLBINDS response form.

$ALLBINDS is scheduled to be developed more in the near future, so we
will defer any further discussion of it until a later paper. The $ALLBINDS
code, rudimentary as it is, is included in Appendix C.

2.1.8.2 The SC Body and Invocation Control

Returning to our (LOVES JOHN MARY) activation example, assuming that a
successful polling has occurred, the SC°s body is ready to be invoked. In our
example, only one copy of it will be invoked. However, if there had been any
variables left in the components of the complex trigger which were polled, it
could have happened that, within the cumulative energy budgets, there were
nunerous ways to bind the remaining variables. For example, if the original

trigger pattern had been:

48

(AND (+ 1 (LOVES =X -Y))
(+ 1 (NOT LOVES -Y -X))
(+ 1 (LOVES =Y =2)))

Display 53. A more combinatorial pattern.

SALLBINDS would have seen two items for polling, instantiated as follows for
the associative stimulus (LOVES JOHN MARY):

(+ 1 (NOT LOVES MARY JOHN))
and (+ 1 (LOVES MARY =-2))

Display 54. Pattern to be polled.

If Mary can be found to love more than one person, say PETE and JACK, we will

now have two ways to instantiate the =X, -Y, -Z of this pattern:

(1) ((-X.JOIN) (~Y.MARY) (-Z.PETE))
(2) ((-X.JOHN) (~Y.MARY) (-Z.JACK))

Display 55. Multiple invocations from one stimulus.

and are confronted with the problem of making an interpretation of this

situation.

We choose the obvious one: invoke two copies of the SC, calling one with
the first alternative instantiation, the other with the second. This scems to
be the only reasonable interpretation, since the ways to bind variables during
polling can become rather involved.

The actual invocation of an SC whose trigger pattern has survived polling
happens as follows: An SC body is always defined by a LAMBDA expression of the

form:

e

T

AT

T T
;

(LAMBDA (X) <sl> ... <sn>)

Display 56. Form of an SC body.

where <sl>,...,<sn> carry out the SC’s computation. As each SC is created, it,
like a trigger tree, is simultaneously defined as a function whose LAMBDA
expression 1is as shown above. This means that if, say, some SC is known
internally as Gl, invoking it will amount simply to calling it with its single
argument bound to the list of bindings being passed in from the trigger

pattern:

(Gl <binding list>)

Display 57. Invoking SC Gl.

where a <binding list> is a list of dotted pairs associating variables and

constants.

In the CSA system, SACTIVATE does not actually cause the invoked SCs to
be run; rather, it constructs a queue of calls such as these and returns the
queue as its response (or, in case it is called with an optional third
argument, $ACTIVATE will augment an existing queue named by the optional
argunent). As it queues each SC call, it will associate a run condition with

the call. The interpretation of an SC run condition is: even though the SC has
been successfully queued, to run, it will not actually be allowed to run until

the run condition (an EVALable LISP expression) becomes true. We will discuss

this more later on.

2.1.9 SCs and Context

Every SC in every trigger tree has an associated context (environment in

which it is to be considered active). SCs can therefore be masked and unmasked
in various context levels by the general CSA context functions $HIDE and

$UNHIDE. The code for these is included in Appendix D. In fact, as will be

50

described shortly, entire trees can be masked and unmasked, so that we have
the possiblity for one SC annihilating another SC, or controlling an entire

population, etc.

We have now more or less reached the end of our treatment of the
engineering issues of how to store and access spontaneous computation complex
trigger patterns. We are ready now to consider how to harness this type of

computation in a higher level control paradigm.

2.2 Higher Level Control of Spontaneous Computation

The question of what to do with SCs when they are ready to run is very
nuch related to what it was that caused them to want to run. Therefore, let
us return now to the metaphor of the central arena which some population of
SCs has been watching, and ask: what types of activities are reasonable to

monitor?

In the two languages which have employed SC as a central paradigm,
PLANNER and CONNIVER, the activities to which SCs react are limited to two
specific types:

(1) changes to a central database

(2) requests for service on a "hot line" to which many computational

modules have access.

"Database change' means either the storage or erasure of an S-expression from
the database; 1in PLANNER, the SCs which monitor stores and erasures are,
respectively, THANTE and THERASING '"theorems'", while in CONNIVER, they are
called IF~ADDED and IF-REMOVED "methods'. An SC which monitors the hot line
for a request which matches its (simple) trigger pattern is called a THCONSE
theorem in PLANNER, an IF-NEEDED method in CONNIVER. Thus, the central arenas

in these languages are limited to database changes and the hot line.

The approach to SC trigger pattern organization we have developed makes
it natural to group SCs into populations in the sense that each trigger tree
could, e.g., be thought of as a functional group of watchers tuned to some
specific part of the environment, some specific phase of an operation, or some

specific context. There may then either be one large, system-wide population,

et g s ot

L PR

. 51

as there is in PLANNER and CONNIVER, or there may be numerous small trees. In
the latter arrangement, trees would perhaps pay exclusive attention to one

arena, or perhaps each tree would gather its perceptions from several arenas.

This natural tendency to split the SC population into functional

subgroups suggests, conceptually at least, the idea of elevating the notion of

a SC trigger tree to the status of a self-contained "programming language
1 K construct", manipulable as a single entity at some still higher level.

Regarding SCs in this way suggests a notion of trigger tree attachment to a

& ; process. Attaching a trigger tree, TT, to a process, P, would amount to
allowing the population of SCs represented by TT to fishbowl P°s activity,

S ——

reacting to it in ways that are either transparent to P, or in ways that alter

or destroy P.

2.2.1 Channels

If this 1is our vision of SC populations, to what are we to attach trigger
trees? In PLANNER and CONNIVER, there is one large population attached to the

store function, one large population attached to the erase function, and one

large population more or less hard~wired into the central control for the

3
!
s
s

system, i.e. the hot line. From these ideas, we have made the (intellectually

nodest) leap to the notion of a channel.

We define a channel to be the medium whereby one LISP function calls
(posts requests to) another LISP function. Doing this will essentially allow
us to "make public" what is ordinarily the private calling protocol between

functions, the locus of all the real work in LISP. This metaphor of a channel
will also give rise to a new programming construct, the CHANNEL (!), to which

trigger trees may now be attached.

We will visualize a channel as follows:

U N SR IBRASCUE L SEINA S5 T iR i ad L oLt oo 2 FERMAR S b s 2 o ST G e Lo e : i i S 2 SRl s Tl

52

i .\; SRS e e e 3

SIGNAL L
cmnee <—D—0 £y —
s \/ e
4 F3
E | TRIGGER |
4 b é SERVER F2

Display 58. Graphic representation of a channel.

Now, wherever function Fl used to call function F2 via the standard LISP

protocol, we will now require Fl to post all requests to F2 on this
intermediate construct, the channel. Unbeknownst to either Fl or F2, we will
now admit the possibility of one or more trigger trees, as well as other
functions, such as F3 in Display 58, being attached to this channel, either as

"transparent'", benign watchers, or as '"modifying", possibly inimical watchers.

Since all the work in a LISP environment transpires via function calls,
if we give watchers the ability to see calling sequences, we will have a "most
general" SC attachment paradigm. Although we will tend to regard the new
channel construct as a state of mind (i.e. a convention not enforced by LISP),
one could imagine enforcing this style of communication by restructuring 1
LISP’s control. Doing so would bring us into a realm of thinking akin to
Hewitt’s "actors'" and '"messages" paradigms [H2]. (In fact, in retrospect, the

whole concept of channels and trigger tree attachment fits in very nicely with

Hewitt’s view of computation.)

We are about to present a specific model of channels and trigger tree

attachment which develops the notions via a hardware channel metaphor. But

before we do, we ought to point out that the new notions will apply to a

paradigm in which S5Cs can react only to changes in states of computation,

R e T o s N e RS

53

rather than to states of computation themselves. Ordinarily, this will not be

a severe restriction, since most reasonable systems will be built up or taken

apart incrementally, and incremental model evolution fits our SC paradigm

precisely. However, it will not be possible, say, to confront an SC system
such as we are developing with a snapshot of a database and say '"react'"! This

is another style of spontaneous computation, which, although it could be
simulated by methodically 1lifting pieces out and putting them back in again
while populations of our SCs were watching, seens to be fundamentally
; different; it is in some sense 'far more associative'", since it does not rely
1 on triggers, but rather on configurations. We will not pursue this style on SC

in this paper, but will keep it in mind as a future idea. **

% We are always interested in stayigﬁ close to our intuition about how

the human brain must work., Even if we could engineer some exotic theogy and/or
hardware to react to configurations, it is not clear that this would be a good

model of human associative powers anyway; the feeling is that the model we
- hav§ been developing coincides with some key intuitions about how our brains
3 work.

2.2.2 Channel Characteristics

A channel is a construction with the following features:
(1) it has a one-dimensional "extent'", with directionality

(2) other constructs can be attached to it at tap points; there is no
limit to the number of tap points

(3) the left-right ordering of tap points is significant

(4) each tap point is either a watcher or a server, and have mode

either transparent or modifying

(5) signals (either requests to a server, or a response from a server)
may be injected on a channel at arbitrary starting points, and

propagate either left or right.

(6) both channels and tap points are context-sensitive, so that

reconfiguring the medium by which one function calls another is

relatively simple.

1
E

ez g Bt A U a0

e & aou L St L

b

e —————

54

In this manner, any given trigger tree may be attached to any number of

channels at any number of points.

The primary channel-related functions in the current CSA system are: **

P L B L T T STy

($CONNECT <object> <channel> <mode> <type>

<in-relation-to> <other-point>)

($SDISCONNECT <object> <channel>)

($INJECT <signal> <server> <channel>

<in-relation-to> <other-point> <prop-direction>)

Display 59. The 3 primary channel functioms.

** The code for all channel-related functions is included as Appendix B.

where the arguments to these functions are defined as follows:

<object> := <watcher> | <server>

<watcher> := <trigger tree name> | <LISP function name>
<server> (= <LISP function name>

<channel> := <LISP atom>

<mode> := TRANSPARENT | MODIFYING

<type> := WATCHER | SERVER | RESPONSE-WATCHER
<in-relation-to> := BEFORE | AFTER | AT

Sk o iie g

<other-point> := <watcher> | <server> |
RIGHT-END | LEFT-END

<signal> := <LISP S-expression>

<prop-direction> := LEFT | RIGHT s

Display 60. Channel functions argument syntax.

55

and the semantics of <other point> are that it be some existing tap point on

the channel.

2.2.3 Channel Operation

Since a channel is both spatial and directional, we will imagine a signal
to propagate from some starting point in some direction with finite speed. As
it passes by a tree of watchers, any relevant watchers in the tree will be
triggered and run, and either (1) allow the signal to continue as-is, (2)
modify the signal but allow it to proceed, or (3) block the signal altogether.
If and when the signal reaches the requested server, the server will be run
unconditionally on the (possibly modified) signal. Its response will then be
momentarily held while the signal is allowed to propagate to the end of the
channel, or until it is blocked. At that time, the server’s response will be
injected on the channel, starting at the server’s tap point. The response is
defined simply as the LISP value the server returns, and it will propagate
from the server’s tap point of the original request that instigated the
channel activity. On its way back, the response may pass over a set of
"response watchers'" which, similarly, can have the potential for altering or

blocking the response as it passes on its way back to the requestor.

As an illustration, we will set up a rather simple channel configuration
which models the THANTE capability in PLANNER. This will amount to activating
any relevant watchers after some fact has successfully entered the system’s

database.

The CSA calls required to set up this channel are:

($SCONNECT “$STORE ‘DB-IN-CH ‘TRANSPARENT ‘SERVER
‘AT ‘RIGHT-END)

($CONNECT “TRIGGERTREEl ‘DB-IN-CH ‘TRANSPARCNT ‘WATCHER
"AFTER “$STORE)

Display 61. Setting up a channel to model PLANNER.

R S s D R i U A Ll 5 S S g O N R S T 8 G s S M B 3 G AR S it S T Lo AR NN 5 S sk

56

i.e., attach the function $STORE (the CSA database storing function) to

channel DB-IN-CH (creating this channel if it does not already exist) as a
transparent server at the right end of the channel; then attach TRIGGERTREEIL
to DB-IN-CH as a transparent watcher after (to the right of) $STORE.

Now, wherever $STORE would have been called directly, as in

($STORE ‘ (LOVES JOHN MARY))

Display 62. The old way to store facts.

;1 we will in the future store facts by placing them as signals to $STORE on the
DB-IN-CH:

($INJECT “(LOVES JOHN MARY) °“$STORE ‘DB-IN-CH
‘AT “LEFT-END °‘RIGHT)

Display 63. The new way to store facts.

that is, inject the signal (LOVES JOHN MARY) to the $STORE server on channel
DB-IN-CH, starting at the left end of the channel, propagating right.

If, on the other hand, we wished the population of SCs in TRIGGERTREE! to
have access to the signal before $STORE sees it, and furthermore, to be able

; to modify or block the signal altogetiicr, we would set up DB-IN~CH as:

{ ($CONNECT “$STORE ’DB-IN-CH ‘TRANSPARENT °SERVER
‘ ‘AT “RIGHT-END)

($CONNECT ‘TRIGGERTREEl ‘DB-IN-CH “MODIFYING ‘WATCHER
“BEFORE “$STORE)

Display 64.

i b a0 A e L Ao R S BB i g o

57

PR ahibibiiiess i B 3

and then inject requests from the left end.

0f course, by knowing the structure of the channel, we could sneak

signals past this population of modifying watchers either by temporarily

disconnecting them:

s g

(SDISCONNECT ‘TRIGGERTREEl ‘DB-IN-CH)

($INJECT ‘(LOVES JOHN MARY) “$STORE °“DB-IN-CH
AT "LEFT-END “RIGHT)

($CONNECT ‘TRIGGERTREEl ‘DB-IN-CH)

Display 65. A temporary disconnect-reconnect sequence.

or, more simply, by injecting the signal to $STORE at a point where
TRIGGERTREEI would be bypassed, or seen only after $STORE had seen the signal:

(SINJECT “(LOVES JOHN MARY) °$STORE ‘DB-IN-CH
! “AFTER ‘TRIGGERTREEl1 “RIGHT)
or
($INJECT ‘(LOVES JOHN MARY) °“$STORE “DB-IN-CH
AT "RIGHT~END ‘LEFT)

Display 66. Putting the directionality to use.

1f, additionally, we desired that a server’s response be mnonitored, we

would attach a trigger tree of response watchers, either blocking or

transparent, at some point on the channel where response signals from the
server back to the requestor were expected to pass. For example, in the CSA
system, $STORE will return a GENSYMmed atom as its response, indicating where
the new fact has been stored. Knowing this, our "population" of $STORE
response watchers need be nothing more than a single SC whose trigger pattern

is simply:

e A b et

PR ST

(+ 1 -X)

Display 67. A simple response watcher.

(i.e. a single variable to which the passing GENSYM would bind). The body of
this single SC could then manipulate or change the new fact in any way
required, and possibly modify the signal as it propagated back to the

injector.

We would stage such a situation by:

(SPLANT “(+ 1 -X) <some body> “TRIGGERTREEZ)

($CONNECT ‘TRIGGERTREEZ °DB~IN~CH "MODIFYING
"RESPONSE-WATCHER “ATFER ‘LEFT-END)

Display 68. Setting up a response watcher for $STORE.

2.2.4 Tap Points

A watcher need not be a trigger tree; instead, it is allowed to be an
arbitrary EXPR of one argument. This is in reality how a trigger tree looks
to a channel anyway. In the implementation, as a signal passes by a watcher,
the watcher 1is simply APPLYed to the signal. If the watcher is a modifying

watcher, W, the signal which will propagate past W 1is simply the value
returned by W.

In order to make trigger trees compatible with this protocol, every
trigger tree (as it is created) receives a function definition as well as the
tree structure itself. As shown earlier, this allows us to regard the tree as

an EXPR of one argument which can be "applied to a stimulus" in order to

activate some subset of its population of SCs. Hence, as a signal passes by a
trigger tree, T, T is simply APPLYed to the signal.

L R B B P L S A SRR - A 0 0 20 S BT 2 0 00 i o s Ut st 55 i el ot 2

59

i

% In the case of a modifying watcher, W, which is a function (rather than a
g trigger tree), the modified signal to be propagated can be defined simply as
the value W returns. But for trigger trees, which are mobs of computations not

necessarily related to one-another or coordinated in any way, and where there

could be quite a few relevant SCs which run in reaction to some signal, there
is a question of how the modified signal is to be computed and communicated
back to the channel.

To solve this dilemma, each trigger tree has an associated signal buffer,
depicted as:

canneL <& O >
2, i o
=== Y=
\ [SIGNAL
} |
|
SIGNAL e
BUFFER
3
2 TRIGGER
E | TREE
|
|
- Display 69. Trigger tree signal buffer.
:
p
3 As the tree is about to be applied, its signal buffer is initialized to the

original signal. Any SC that wishes to alter the signal does so simply by

replacing the contents of its tree”s signal buffer with some new value. The

{ ; value in the buffer after all SCs have been run is the signal to be

E propagated.

E ‘ ' By definition, when a watcher modifies the signal to NIL, the signal has

been blocked, and its propagation down the channel ceases.

sty

The LAMBDA expression which defines a trigger tree as a function as it is

created has the following form:

D s

<
1
|

60

(LAMBDA (STIMULUS)
(PUT <tree name> ‘RESPONSE-BUFFER STIMULUS)
(MAPC (SACTIVATE STIMULUS <tree name>)
(LAMBDA (SC) (COND ((EVAL (CDR SC))
(EVAL (CAR SC)))))
(GET <tree name> ‘RESPONSE-BUFFER))

Display 70. Trigger tree functional definition.

i.e., for a given STIMULUS, initialize the buffer to this stimulus, $ACTIVATE
all relevant SCs, then run each in turn; finally, return the (possibly

modified) signal buffer as the value of the whole computation. The COND inside
the LAMBDA in the MAPC tests the SC’s "run condition'", which will be described

shortly.

2.2.5 Possibilities for Channels

Channels are powerful constructions since they fracture the private
communication channels among the LISP function calls which implement a theory.
While we have implemented enough to provide a flexible SC framework, there are
clearly many other ideas to be pursued concerning channels. One obvious idea
is to allow channels to connect as tap points to other channels, giving rise

to situations such as:

P IRLY

Niscialise.

61

‘\\
\
—
L4

4 i L\
N >
1H
2 - T

p, ! 5 W Y

e | —

B Y [4

A4

}
A

Display 71. Channel-channel interconnections.

Another obvious generalization would be to move away from requests to
servers by name, and toward a more pattern-directed scheme wherein requests
would be injected to (possibly multiple) servers on the basis of pattern
matching the request pattern against the patterns advertizing the servers’
capabilities. Of course, we already have this ability if, instead of
distinguishing servers from watchers, we regard all servers as a special
subclass of watchers. For example, instead of attaching $STORE to a channel
directly as a server, we could fabricate an SC which would react to patterns
of the form ($STORE -X), place it as the sole SC in some tree, then attach the
tree to the channel as a watcher. $INJECT s would then look like

($INJECT “($STORE ‘(LOVES JOHN MARY)) ‘DB-IN-CH
AT ‘LEFT-END °RIGHT)

Display 72. Calling $STORE as a watcher.

R R i

e g

.

62

We want to avoid the temptation of inventing control structures with no

good applications in mind; so we will be ascetic and postpone any orgies in

control structure until some realistic uses for the exotic possibilities

arise!

2.3 Some Finishing Touches on the Engineering

$PLANT, the function which creates SCs and knits their complex trigger

patterns into some trigger tree, will accept three optional arguments in
addition to its three mandatory ones (trigger pattern, SC body, and trigger

tree). The optional arguments are:

(1) a reference name, specified by the form ‘(N. <LISP-atom>) as a

calling argument to $PLANT; if present, this will cause the SC to

be named, as in:

($PLANT ‘(AND (+ 1 (UNSUPPORTED -X))
(- 10 (DISTANCE -X EARTH ORDERMILES)))
<some body>
“TRIGGERTREE3
“ (N.EARTHGRAVITY))

Display 73. Naming commonsense earth gravity.

(2) a run-queue priority, currently either FRONT or REAR, specified by
the form °(P.{FRONT,REAR}). This will tell SACTIVATE what to do

with the SC when queuing it up for subsequent running. $ACTIVATE
will ordinarily form a list of SCs to be run, and simply return
this queue as its value. However, $ACTIVATE may be called with an
optional third argument which names some existing queue to which
it should send SCs as it invokes them. In either case, each SC,
via this priority property, may specify the manner in which the SC
is to be queued: either placed at the FRONT of the queue (the
default), or at the REAR. We expect eventually to upgrade this

facility to accomodate numerical priorities computed by some more

UL Al ahaigt o 41 oM N WA Ay

Lk - 8 k. - SRR

63
sophisticated criteria; but for the time being, we have no need
for this.

(3) a run condition, denoted by the form ‘(R.<condition-builder>)
where <condition-builder> is an S-expression which will be EVALed

immediately prior to queuing an activated SC for running. The form
which <condition-builder> constructs will be associated with the
SC invocation call on the run queue; the SC will not be permitted
to run until this condition is true. For example, if we did not
want some SC to run, even though activated, until some timer,
TIMER, had ticked, say, 10 times, we would include a run condition
with the SC as it was planted: **

(SPLANT <some trigger> <some body> <some tree>

“(R . (LIST °“GREATERP ‘TIMER (PLUS TIMER 10))))

Display 74. Attaching a run condition to an SC.

An SC in a trigger trece which is attached to a channel will be run
after a successful invocation only if its run condition evaluates
non-NIL at the time the tree is activated by a passing channel
signal; SCs whose run conditions are not satisfied at that time
are simply discarded. Because of this, we ordinarily omit the run
condition when defining an SC which will participate in a tree
attached to a channel, letting the condition default to TRUE.

*% Grinberé does this type of thing 1in the CSA Mechanism Simulator,
described in [RGl].

llany extensions to this rudimentary SC invocation queuing scheme will be
possible, and probably desirable. For example, in addition to run conditionms,
it will probably be useful to have abort conditions which would, upon becoming
true, cause the SC to be purged from the run queue. Again, we have held back

in this area until a better picture of what will be needed emerges.

R e T e I

64

We have now described most of the design and engineering points of the
existing SC component of the CSA system. Appendices A through E contain,
respectively, the code for the SC component, the channels component, the
database component, the context component, and some miscellaneous related

functions. The contents of these appendices form a closed system which may be

coded in any LISP; to expedite this, we have included as Appendix F a list of

known differences, and their ameliorators, between our version of Wisconsin
LISP for the UNIVAC 1110 and other more widespread LISPs such as Stanford
(UCI) LISP, MACLISP and INTERLISP.

A e M T Mo s

65

3. THEORY OF SPONTANEOUS COMPUTATION IN COGNITIVE MODELS

At this point, we are ready to move into some more theoretical
considerations about how SC can be put to use in cognitive models. We will
begin with the interesting question: What is the relationship between the SC

component and the deductive component of the system as manifest during the
polling process? 1In particular, what effect ought partially triggered SCs

have on the system?

3.1 Partially Triggered SCs

Each SC trigger pattern may be regarded as a spiny urchin (sophomoric
metaphors notwithstanding!); when any of its spines are touched associatively
by some passing object, the rest of the spines are set in motion, by a polling
process. (Is this the way a real urchin works?) While the triggering is purely
associative, the polling process which ensues 1s very deductive, or
goal-directed in the sense that in its subsequent behavior, the system becomes
(at least momentarily) motivated to seek out the polled conditions to enable
the SC to run. In a very important way, therefore, SCs will comprise a basic

source of goal direction.

One interesting question is: what ought to happen when some trigger fires
associatively on some stimulus, causing polling to occur, but then not all the

required components of the trigger pattern can be derived deductively?

Two obvious things could happen: the SC could simply be put back to
sleep, retaining no memory of anything that just transpired, or all the
partial results of the initial association and subsequent polling could
somehow be remembered. We will call these two general strategies the pulse
model and the pressure model of SC activation. The term "pressure" is intended
to suggest a cumulative buildup of evidence in favor of running the SC. The
term '"pulse" 1is intended to suggest the transient nature of SC trigger
patterns which have no memory of past partial successes; unless all required
components of a pulse SC’s trigger pattern are found to be true

simultaneously, the SC never fires.

There will be applications where we can get by with a pulse model.

Sussman, for instance has what amounts to a pulse model in his electronic

66

circuit analysis program [SS1]. Since his SCs are monitoring nominally

straightforward physical conditions (e.g. the presence cor absence of a pulse,

the instantaneous current through, or voltage drop across a component, the

e e

state of some transistor), the pulse model is apparently adequate in his case.

However, the pressure model is far more interesting theoretically, both
because it conserves what it has discovered as partial evidence (via what may
have been a very costly deductive process), and because it can be made to give
rise to "lingering motivations'" within the system, i.e. to focus what happens
in the future on the basis of what has happened in the past. We will take a
noment to expand on the notions of pulse and pressure by drawing analogies to
computer hardware; then we will consider how the pressure model might be

inmplemented and the theoretical implications of doing so.

3.1.1 Pressures, Pulses, AND Cates and Memories

4 If we were to ignore (without 1loss of generality) the disjunctive

components of an SCs trigger pattern, we would see a pattern of conjunctive

conditions. The analogy is thus one of an AND gate, where the gate’s inputs

are the conjunctive components of the trigger pattern, and the gate’s output

is the cumulative effect produced on the system by running the SC’s body:

E | TRIGGER ‘
E | CONDITION P

1 : % 4 > EFFECTS

. ___/ i

TRIGGER g
CONDITION)

Display 75. An SC as a symbolic AND gate.

But, of course, instead of binary pulses, each line will now carry more

' conplex symbolic information. In our scheme, this symbolic information on any
i. given input line can be distilled down to a binding list, indicating how the
i variables of the conjunctive element must be bound in order for its input line
' to be high (active). The sheer existence of the line will imply a specific
relationship (e.g. LOVES) among the bindings which flow on the line.

TR

67

For the analogy’s sake, let us assume that each SC body’s computation
will be such that the body simply asserts a new piece of knowledge whenever
its trigger pattern is fulfilled for any particular set of input bindings.
(That is, the body produces no strange side-effects.) If we make this
assumption, the output of our AND gate can then also be expressed as a binding

list. An example is shown below in Display 76.

(AND (+ 1 (LOVES =X -Y)) ========> (UNHAPPY -X)
(+ 1 (NOT LOVES -Y =X)))

((=X.,JOHN) (=Y, MARY))
= WEE
(xotarY) (vodom) [—7

(=X 10HN))

=

Display 76.

Given any population of SCs restricted in this manner, it will be

possible to construct a logically equivalent hardware configuration, keeping

in mind that lines carry not binary pulses, but binding lists.

Now, "pulse" in this setting will have the obvious interpretation:
bindings exist on lines only in short bursts; if not all conjuncts are present
simultaneously (and furthermore, have compatible binding values), no output

will be produced by the AND gate, and no memory of a near-miss will ever

exist.

"Pressure', on the other hand, will amount to levels being maintained for

M b M e VI O MR 5 i s 3 IR 5 o GGt 5005 Kbt 452N SRS i 50 s i i it e«

S M oS ot i 5 Ao SR G o A i b AT RIS i L5 o 3 S

68

extended periods of time on the various lines. If this is to occur, we must
imagine each line to possess a memory for recording all the various binding
lists which have "backed up" on that line, but which have not yet participated
in a full triggering of the SC. For example, suppose (for the SC trigger
pattern of Display 45), the system acquires:

ij (LOVES JOHN MARY)
(LOVES PETE RITA)

(LOVES SALLY BILL)

Display 77. Some knowledge that backs up.

all before it becomes aware of any of:

(NOT LOVES MARY JOHN)
(NOT LOVES RITA PETE)
(NOT LOVES BILL SALLY)

o s e

Display 78. Information that would unclog the backup.

Then, in the pressure model, the backup on the (LOVES -X -Y) line of the AND
1 gate of Display 76 would look like:

o e B, R L R G S e TN e R AT S AR - 5 G 43 AR A 5B W) i U i 3 S 5 RN 3453 A M g 0 b AN N 5 7B AN AE TGS

G B AT T N BRI

b S et

69

W dad

R O R R R i e i it

-

i

Vi

((=x.JOHN) (-Y.MaARY))
((-x.PETE) (-Y,RITA))
((=x,sALLY) (-Y.BILL))

v

J

Display 79. Lovers backups.

It is interesting to contemplate what such a logic would look 1like, how
it would behave, and how it would be implemented in hardware gates that could

actually manipulate symbolic signals on all lines instead of binary pulses.

(What would correspond to a counter or a flip-flop?) However, rather than
{ pursue the hardware analogy, we will turn to software alternatives and their

implications for carrying out a pressure model.

3.1.2 SC Splitting

One obvious technique for managing pressure would be simply to attach
each backed up binding 1list to its associated conjunctive component in the
trigger pattern. This would be directly analogous to signals backing up on an
input 1line of the AND gate. But, whereas we would hope to solve the time

; i problem of recognizing when backed up signals were finally usable by
associative hardware in the AND gate analogy, the runtime overhead incurred by
this backing up of signals in a sequential simulation makes it an unreasonable
idea. In addition, while backed up binding lists certainly do constitute a
memory for what has happened in the past, the memory would be buried in an

] : obscure place and form 1if pressure were implemented by attaching a list of

backed up bindings to components of SC trigger patterns at run time.

RO s &

Because of this, it is hard to see how to put such a scheme to use as a

T

70

source of motivation (to fulfill bindings of the remaining AND gate lines) to
the system; and since deriving goal direction from partially activated SCs
seems to be an important idea, we would reject this approach to pressure even

if it were timewise inexpensive.

But there is another, conceptually different approach to implementing the
pressure model. Suppose SC X’s trigger pattern is initially stimulated by
stimulus A; suppose the polling process, interacting with the deductive
mechanism, ascertains that certain ones of the other required components of
the pattern are satisfied, but that one or more remain unsatisfied (that is,

not all of L(A) is satisfied).

If the parts satisfied by the polling process are Xl,...,Xj, and the
unsatisfied ones are Yl,...,Yk, we can conserve much of the effort expended to

that point by splitting off the as-yet unsatisfied portion of the pattern,

YEs seogtky aud instantiating as much of it as possible with the various
bindings derived from those parts, A,Xl,...,Xj, which have been satisfied.

In general, this may give rise to numerous partially instantiated
patterns, corresponding to each possible binding set (way to perform a partial

instantiation of Yl,...,Yk) derived from A,Xl,...,Xj. We will call this
process SC splitting.

SC splitting will amount to a narrowing of the scope of applicability of
the original SC, S, to some subset of the original class of situations to
which S is applicable. In this sense, SC splitting provides not only an
implicit memory for what has happened (i.e., it creates simpler AND gates

whose existence represents some combination of backed up binding 1lists), but

also a theoretically important strategy for narrowing the system’s future

focus according to what it has become aware of in the past.

As an example, suppose there is an SC whose pattern is:

(AND (+ 1 (DISLIKES =X =Y)) ====> (DENY =X =Y) **
(+ 1 (REQUESTS-HELP-FROM -Y =X)))

Display 80.

M L8 b e

b

G S 0Lt 45 s s SO i e s i s b B P i oo B e

w0

;
g
!3'

71

** Again, we are using rather ludicrous predicates in these examples
simply for the sake of brevity in the representation!

and the stimulus: (DISLIKES JOHN PETE) appears. Suppose furthermore that this
SC, aroused by this stimulus, is then unable to determine (REQUESTS-HELP-FROM
PETE JOHN) during polling. Rather than allowing the SC simply to doze off
again, we will instead split and instantiate it, giving rise to a new SC whose

pattern is:

(+ 1 (REQUESTS-HELP-FROM PETE JOHN)) ====> (DENY JOHMN PETE)

Display 8l. A split and instantiated SC.

thereby arming the system with a new piece of knowledge of more limited scope

than before and preserving a '"memory" of partial activation.

3.1.2.1 SC Splitting, Context and Frames

1f we now visualize what begins to happen system-wide in a model that
splits SCs, we can see the possibility for many SCs becoming partially aroused
and satisfied by some stimulus, say, (DISLIKES JOHN PETE). That sub-population
of SCs which nibbles at this stimulus constitutes, in a very real sense, the
model’s composite understanding of what DISLIKES mecans; after all, the

"meaning" of a (DISLIKES -X -Y) relationship can be no more than the sum of

all larger patterns in which it occurs.

The act of splitting and instantiating all SCs that nibble at some
stimulus involving DISLIKES therefore amounts to conditioning the system with
an implicit DISLIKES relationship between the two people involved. The way the
systen behaves in the future will then reflect this conditioning through the

population of specialist SCs which were spawned by the splitting process.

If we regard the population of SCs which would nibble at some stimulus as
the frame (Minsky [M3]) for that stimulus, then the event of splitting and

instantiating that population for some particular instance of the stimulus

i o B S 3T A e S008I AT AT AR i £ 0 i i bl i i ¥ it e N2 A S s i 4 B o s 25 o 5 i 5 i b

72

R e

will correspond to instantiating its frame with specific terminals (to use
Minsky’s terms). In other words, all instantiated and split SCs which would
nibble at (DISLIKES JOHN PETE) will collectively represent a copy of the
"DISLIKES" frame, instantiated with respect to JOHN and PETE.

This similarity between partially activated SCs and frames is
aesthetically pleasing, since it seems to tie some ideas together. All the

ideas have to do with the system being able to "tune" itself automatically to

a situation in order to access the most relevant world knowledge in the most
efficient manner at the most opportune moment. We have previously been
interested in this idea of tuning within a totally different, demand-based
computation framework as described in [R2]. In that framework, tuning means
planting so-called 'bypasses'" 1in the selection networks of the other

theoretical half of the CSA system, the more goal-directed components.

Thus, we have a pleasing closure of ideas about context in the

demand-based components of the CSA system as well as the spontaneous

components, and one which relates both to the general frames point of view.

| 3.1.2.2 Mechanics of SC Splitting

There are two questions concerning the manner in which splitting is to be

controlled, and the manner in which the split results are to be handled. We

! are in the process of implementing some of the ideas about to be described,

but the code included in the appendices does not reflect any of these ideas.

The easier question is: what ought the system to do with SCs which have

arisen via the splitting process? There are two obvious alternatives:
(1) plant them in a trigger tree
(2) send their patterns to a "curiosity queue"

Planting split and partially instantiated SCs in a trigger tree amounts to
creating a population of specialists who will be geared to more specific

events in the arena than the SCs from which they arose.

If split SCs are planted in a separate tree, where ought the tree to be

accessed? Because the tree of split SCs represents a more special-case version

il e vl

;»P ! of certain SCs 1in the original population, it would seem most reasonable to

TR G A AN AL TR 55 P 30 A AP SO LA B -SRI VA B NI N it S S L AT S A ol 5 o 5 i 5 S

i Sl e

73

attach the new tree to a point on the same channel to which the original tree

is attached at a point before the original tree. In this manner the specialist
knowledge could have a crack at passing patterns first, blocking them on

successful activations so that the generalist knowledge need never see them.

3.1.3 Story Character Followers

In The Magic Grinder story which we have been using to focus our story

comprehension research, there is a very natural application of this notion of

SC splitting that has to do with modeling the story characters.

As each character is introduced, or as each new characteristic of a
character 1is discovered, we propose to dangle the new features over the
population of SC generalists, then catch, split and instantiate all the

" for the character whose features

nibblers to capture or refine the "frame
have been nibbled at. Then we will plant the resulting split SCs in a tree

associated with the character. We imagine there to be a tree for each story

character, and we call the tree for each character a character follower.

Character follower trees will represent fragments of the generalist

knowledge which have been tuned to the idiosyncrasies of each character.

Beause of this, they can do a more efficient job in the role of spontaneous

inference (including predictions) where the character is concerned; character
é ; follower trees hence represent a significant form of search reduction in the
. processes which will | redict what any given character is likely to do, or how

he is likely to react to any given situation.

We will have more to say about the use of SCs as a partial basis of

(o i

inference, but we will also argue that there is a large class of inference not

appropriate to this paradigm.

3.1.4 Curiosity Queues

T

Planting split SCs in new trigger trees is a way of 'subconsciously"

conditioning the system in a data-driven fashion. We use "subconsciously" here
in a figurative sense to suggest that the resulting SCs, while more specific,

become simply another component of the background of watchers. In this sense,

they contribute no additional motivation to the system.

s AR

T R S S T B S S

74

A curiosity queue, on the other hand, will provide an alternative
receptacle for split SCs that can be regarded as a focal point for more
"active" motivations of the system, those motivations which are not a priori
part of the model, but rather which arise because of curiosity about things

only partially revealed, say, in a story.

Suppose, rather than planting a split SC in a trigger tree, we place the
unfulfilled parts of its pattern on a queue which will be scanned
periodically. Scanning will mean: attempt to answer the lingering questions on
the queue, calling upon the general powers of the system’s deductive
component. In this sense, items on the curiosity queue acquire an elevated
status of being actively sought. The queue will define a set of "problems" by

which, say, the reader of a story is bothered.

We would argue that there is a very important distinction in theory
between this use of split SCs and the replanting technique. Because events in
the deductive process, and particularly partial evidence it may wuncover, can
provide new fuel for still other parts of the SC component, the periodic scan
of the curiosity queue will be the origin of an important enriching cycle

between the deductive component and the SC component.

When to plant vs. when to send to the curiosity queuc seems to be the
nain question. One obvious idea is to send to the curiosity queue only those
split SCs which are almost completely triggered, while merely planting others
which are still rather tentative. Another idea would be to preview what the
body of the SC would do if run, and if its potential contribution looked
especially relevant to the solution of some other problem on the queue,
promote the split SC to the curiosity queue rather than interring it in a
trigger tree. Previewing would therefore be a technique wherein priority would
be given to those SCs with the most apparent promise for contributing to the
solution of some other problem. Previewing would require some restrictions on
the structure and semantics of SC bodies, or an independent precis (in the CSA

declarative representation) of what the SC would do if run.

We are presently contemplating how to implement SC splitting. Apparently,
the directives about when and how to split must be contained as features of
each SC, or possibly as features of the trigger tree which represents an

entire population of SCs. Current thinking is to give each SC a SPLIT-ON

5PN v TR M2 S ko i S5 AT

B e B A P

I

AR A

TR A LWL

e R 0 i B LS S A NG

R e s
.

e —————

bl PR

75

condition which will name the components of the trigger pattern which must be
satisfied in order to split. Clearly, there will be cases where any
combination of components which pass some criterion should instigate a split,
so our syntax will have to be rather flexible. Perhaps it will be necessary to
distinguish the conditions for splitting and planting from the conditions for
splitting and gqueuing. In any event, we will hope to discover techniques for
factoring the splitting directives out of the individual SCs and into a more

central collection of heuristics.

SC splitting and its ramifications are very fertile grounds. But rather
than progressing from half-baked ideas to quarter~baked ideas, we want now to

turn to some specific theoretical applications of spontaneous computation as a

paradigm in cognitive models, particularly those in the domains of language

conprehension and problem solving.

3.2 Spontaneous Computation as a Basis of Inference

Inference, as distinguished from deduction, 1is a process wherein new

knowledge, formed out of existing knowledge, arises without solicitation. In
deduction on the other hand, new knowledge also arises from existing
knowledge, but only after solicitation from some component of the system with
a specific need. Therefore, deduction is goal-directed, or 'top-down",

inference is data-directed, or "bottom-up".

In the CSA model of the more goal-directed processes (described in ([RI1],
[R2] and [R3]), we have been concerned with a special class of inference
dealing with actions and knowledge about causc and effect. We call knowledge
about cause and effect algorithmic knowledge, and therefore term inferences

which arise from this knowledge algorithmic inferences. We will want to make a

clear distinction in theory between this class of inference and the class for

which, we propose, SCs should serve as a basis.

Algorithmic inferences, by definition, have to do with why actions are

performed in a given context and why actors desire certain conditions to be in
effect. The point of view is that purposeful actions are done for reasons
which can be inferred, given a rich enough knowledge about cause and effect.
Similarly, the reasons why a potential actor might desire some condition to be

true nearly always relate to the enablement requirements of planned subsequent

oA N g A S A A A PR R A A v - i 58 MRS A 008 s ok i n e i el 75 i (05 A b 7 14 iR i 5 25 B S

MU Ll A i i O AL AN SRR S Bl e

76

actions which will collectively lead to some final goal.

3.2.1 Algorithmic Inference

‘| In [R1], [R2] and [R3], we have argued that this teleological knowledge

is highly structured, and accessible in very orderly, "refereed" manners. In
brief, the process of algorithmic inference goes as follows: state S or action

A is perceived to be (respectively) desired or performed by some actor; the

system’s goal is to produce a context-sensitive explanation of this desire or

action.

In the CSA setting, there is a large number of relatively small

cause-effect schema, called abstract algorithms which describe specific ways

for causing states and statechanges to occur. The abstract algorithms are

organized into so-called causal selection networks, one network fgg each state

& and statechange concept known to the system. For example, there is a

statechange LOCATION network which serves as the organizing structure for

it yri T

thousands of (in principle, not in the running model!) strategies for changing

the location of various types of objects from a starting point to a terminal
point. Clearly, the strategy will be dependent on both the objects and places
involved 1in the statechange of location, who it is that will be effecting the

ot

strategy, and a general awareness of the context in which the strategy will be

| effected. It is the purpose of a causal selection network to ask an orderly

progression of questions to illuminate as much of the relevant information as
required about the situation so that an intelligent selection of one strategy

from among the large number of contenders which may exist at the terminals of

the selection network can be made.

oA R

The causal selection networks therefore carry out the theoretical point

; of wview that intelligent selection from among a collection of known

alternatives is a primary aspect of human intellectual abilities.

But if the system has an algorithmic base of thousands of cause-effect
schema, each tuned to a small part of the world, we can also confer upon it

' j the reverse ability to determine of any given state or action, X, where X

could conceivably participate 1in cause-effect strategies. Knowing where X

could participate, it is then possible to trace upwards (backwards) through

N

layers of CSA patterns and causal selection networks from the set of starting

e

ot

2
i

t
b
14

i
|
t '
b
|
E
\
b
!

R AR

O I R

i1

points (strategies) in which X might be participating. By applying the
questions in the network as this upward climbing occurs, it seems to be
possible to rule out most possible "interpretation paths" quickly, because of
failures of the situation in which X participates to agree with the tests in
the network. (This is described in more detail in [R2].)

The final interpretation, i.e., the algorithmic inference, from X is that

path (or collection of paths) which survive long enough to connect up with a

prediction ** which has been made concerning the actor associated with desire

or action X.

** The CSA s¥stem's predictions at any given moment have been derived
from other CSA patterns, primarily ones involving the so-called inducement and

motivation links. These are described in [R3].

We propose that this type of inference, inasmuch as it interacts with a
highly structured knowledge about cause and effect, ought not to be modeled by
spontaneous computation. Without the tremendous search- restricting and
nediating influence of the causal sclection networks, the system would explode
combinatorially with possible interpretations of actions and desires in
context. Fundamentally, SCs are local entities which are independent of
one-another. They are inherently resistant to organization into the kinds of
larger structures which seem to be appropriate for cause and effect knowledge,
and we believe that it would be incorrect to attempt to cast them in this mold
by building ''spontaneous computation selection networks'. SCs are simply not
intended to be selected among, and are hence intrinsically ill-suited for

algorithmic inference.

3.2.2 Non-Algorithmic Inference

What other types of inference are there after we eliminate cause-effect
based inference? Clearly, a 1lot! But it is very difficult to characterize
under any one banner what 1is left over. Common to all remaining types,

however, will be a characteristic absence of intentionality. We feel that it

is to this residue of non-volitional inference typec that SC-based inference

ought to be limited... to actionless situations, "settings', which convey

R R e T e G A Rt AN A

i i i

SRR M s Ll e AN St 3 Kl S R S O N AR U i Al i 82500 v A 4 AR el e i o 0 P S s A i AN AR A A 0 e R AN 3, S e -

78

information via state descriptions which have not been purposefully caused by

actors. This will embrace things like descriptions of characters in stories,

%
1
scenes laying out spatial or emotional relationships, patterns delimiting how :
a story character might be expected to behave in general situations, and so 3
forth. In other words, SC-based inference ought only to deal with :

non-purposeful aggregates of states which are the way they are for no
particular reason, but which nevertheless will represent an often rich basis

for inference.

3.3 Spontaneous Computation in a Plan Synthesizer

3.3.1 SCs as Models of CSA Tendencies

In the CSA model, there are five theoretical types of events: actions,
states, statechanges, wants, and tendencies [Rl]. A tendency is defined to be
an action-like event, in the sense that it causes new states and statechanges,

but an event in which there is no animate actor. A tendency 1is therefore

non-intentional force which must occur whenever its set of enabling conditions

occurs.

2

For example, our commonsense notion of gravity tells us that whenever an

object X 1is in an unsupported state and close to a very large mass, it will

! begin changing its location from where it is toward the large mass. In CSA

syntax, we write this as follows:

o T

Py

79

D, TR o) oS
STATE
% Pisugiomen
STATE
STATECHANGE (tgccAI;?NE;)R(ﬂ]

Display 82. Commonsense Gravity

CSA distinguishes the notions of enablement and gating. An enablement is
a condition (state) which must be in effect in order for an action to proceed,

regardless of what the action is intended to accomplish. For example, if one
wishes to pick up an object, he might grasp after having ensured that his hand
is hovering around the object he intends to pick wup. In this situation,
regardless of whether or not the gating state (AROUND (UAND P) OBJECT) has
been satisfied, in order for the action GRASP even to begin, the enabling

condition

(MOBILE (FINGERS (IIAND P)))

Display 83.

must be true, and must remain true for the duration of the GRASP movement.
Enablements therefore are associated with the context-free requirements of

actions in isolation, while gates describe the context in which the action

must be performed in order to achieve some desired result.

There is an equally natural division of enablements and gates in CSA

tendencies. The enabling conditions for a tendency, T, are those states which

must be true in order for T to exist. For gravity, we adopt the view that this

s o o S N 25 o S O i 07

80

force simply does not exist with respccL to some object unless that object 1is
close to a large gravity-producing mass. (This is the commonsense notion
only!) Hence, even if an object is unsupported, unless it is near a large
mass, nothing will happen because the tendency of commonsense gravity simply
does not exist for that object. Gates on tendencies’ causal links on the other

hand specify what context must be in effect when there is commonsense gravity

in order for gravity to produce the result of moving the object.

This separation of enablements from gates in the CSA theory meshes
naturally with the notions of spontaneous computations we have been developing
in this paper. Roughly speaking, every tendency is a purely associative, or
state-based inference which we are obligated to make whenever we can. Thus for
exanple, we may model the tendency COMMONSENSE-GRAVITY by an SC whose trigger

pattern might appear as:

(AID (+ 1 (DISTANCE -X EARTH ORDERMILES))
{(+ 1 (UNSUPPORTED -X)})

Display 84.

But somehow, the two conditions of Display 84 do not have equal status;
the support status of an object is, conceptually at least, far more apt to
vary than the object’s distance from EARTH, and besides, the distance from
earth governs gravity’s existence (with respect to that object), whereas
support relations govern its effects. Since the CSA theory categorizes these

two conditions differently, why not reflect this in the SC implementation of

gravity?

We can do so by retaining only the second condition about unsupportedness
as the SC’s trigger pattern, and placing the SC itself in a tree which models
an entire population of SCs which share the DISTANCE condition as an existence
enablement. Then, by turning the entire tree on and off on the basis of
knowledge about our distance to the earth, we will be able to model

large-scale shifts in context (e.g., leaving the earth’s influence) quite

rally.

gt

b
g.
;\ <

81

We therecfore imagine populations of tendencies modeled by trees of SCs. A
tendency’s inclusion in a population 1is a function of the tendency’s
enablements, while the tendency’s trigger pattern within the tree is derived
from its gate conditions. In this setting, there might be some SCs whosec sole
job would be to turn on and off entire trees of tendencies on the basis of
large scale context changes which arise, say, as the result of executing a

plan, or as the result of entering somc hypothetical context during the course

of synthesizing a plan to solve some problen.

3.3.2 SC-based Tendencies as Synthesizer Interrupts

There are several interesting ways such populations of tendencies can
interact with a problem solver. One obvious way is as a kind of bookkeeper;
when the plan synthesizer ungrasps an object in mid-air, some tendency should
arise and inform the synthesizer that the object is now in a state of motion
toward the ground. Another computation might then be awakened to compute its
expected trajectory and landing point. The synthesizer, meanwhile, may either
have decided to alter its plan in a way which would disable the (undesired)
terdency by ungrasping the object only after ensuring the object was first
supported. Or the synthesizer may decide to ignore the falling condition. In
that case, should tﬁe object be required later, the database will at least

contain a prediction about where the object might have gone (i.e. landed).

Clearly, there are tendencies which are not exclusively physical in
nature; there are emotional and social tendencies as well. We are currently
pondering the relationship between CSA patterns which involve the so-called

inducement link and non-algorithmic inference. For example, suppose we wish to

express the emotional principle: if X sees Y kiss Z, someone X loves, X is
liable to feel jealousy toward Y. CSA provides the expressive declarative

power we need:

T T e o neiit] AT s

I o i vl 53

ACTION (KISS -Y 'ZJ

i
€] LOVES -X -z)

STATE

EFEEL —X
STATE JEALOUSY -Y

Display 85. How to induce jealousy.

In an operational sense, this piece of knowledge is highly algorithmic,

even though it deals with (unexplainable?) human emotions: if John wants to

make Bill jealous, one strategy might be to find someone Bill loves, then kiss
her in front of John. On the other hand, there is a good case for regarding
this pattern as a tendency, since, on another occasion it might not be

intentional at all, but something that happens by chance.

Actually all tendencies are like this inducement pattern, in that they
can play either a goal-directed role or a spontaneous role. For example, there
are times when we may wish to regard gravity algorithmically by consciously

employing it as the top-level strategy for moving an object, and there are

times when we would want it to arise associatively. Because of this, our

inclination now is to regard patterns like this, and indeed, all tendencies as

both algorithmic and spontaneous. In the current plan, tendencies and

inducement patterns will be integrated into both components of the system:

they will be stored as terminals of causal selection networks, and they will

be planted as SCs in trigger trees. Although there is still some ambient

confusion here, we feel that the dual role approach is inescapable.

3.3.3 Subgoal Protection

When confronted with a goal, the CSA plan synthesizer (1) accesses the

causal selection network associated with the predicate used to express the

e i R R R R o T U I a3 N e

83

¥ goal, (2) descends downward through the net, asking questions about the nature
l of the goal and about the environment, following the path prescribed by the
answers to these questions, then (3) adopts the strategy specified by the CSA
pattern it has located at the net’s terminal node. Adopting a strategy means
(a) instantiating the pattern schema with the particulars of the goal it is to
solve, (b) committing to particular things (these are the hammers, cups,
KQ verbal phrases, etc.) that will be required in order to carry out the
; strategy... the components of the strategy introduced by adopting the
. strategy. Finally, the synthesizer (4) solves any unmet subgoals in the

;ﬁ strategy via recursive calls to itself.

Often, it will happen that subgoals are not compatible, or at least
incompatible with respect to some particular ways of solving them. Thus, as
it has been recognized for some time now, there is the danger of a purely
recursive plan synthesizer first solving a subgoal, but in the synthesis of
the next subgoal, doing something that would destroy the effects presumed to

have been achieved by the first subgoal’s solution. Since subgoals are states

of the world which usually must be in effect simultaneously at plan execution

time, if solving one destroys another, the plan simply won’t work. Sussman
E has called this problem 'prerequisite clobbers brother goal", and it was
precisely this problem which motivated much of his dissertation research [Sl].

We will refer to this problem as '"subgoal annihilation'" [L1].

Subgoal annihilation may happen for one of two reasons: either the CSA
pattern the synthesizer has adopted as a strategy is conceptually faulty
(e.g., it may have been incorrectly learned, or may have been learned and
works for one case, but not for another), or, the pattern is not conceptually
faulty, but the ways the synthesizer has gone about solving the subgoals are

antagonistic to each other.

In the former case, restructuring of the strategy pattern itself is

called for (London [Ll] is working on this problem in the context of the CSA
system); in the latter case, retrying the synthesis of the subgoal, this time
avoiding problem spots (and noting them for the future), is called for.

The CSA group is just beginning to address these problems beyond what

i
&
&

Sussman did, and we have no firm ideas yet. Nevertheless, the SC component of

the CSA system is presently capable at least of detecting subgoal annihilation

g
5
4
~

84

in the following manner. As each subgoal is addressed and solved, the CSA

synthesizer 'protects" it by creating an SC which will scream and jump up and
down in reaction to other patterns generated by the synthesizer which are

inimical to the protected subgoal. Currently, this amounts simply to watching
for the erasure of the subgoal which has been imagined to have been solved
(and hence stored as a fact in the hypothetical context in which the

corresponding level of synthesis occurred). However, the protect pattern could
(and should) be made sensitive to a broader spectrum of inimical patterns

within the existing SC framework (e.g. via OR conditions in the protecting

SC’s trigger pattern).

When all subgoals have been successfully solved, their protecting SCs are
destroyed, any actions which the subgoals are intended to enable or gate are
added to the execution run stream being generated, then the current level is
assumed to have been solved. At a higher level, an SC will be created to

protect this goal for as long as necessary, and so on, until the original

problem has been solved.

3.3.4 SCs as Constraint Violation Interrupts

As the plan synthesizer gets deeper and deeper into some plan, it will
create more and more SCs to protect subgoals. This amounts to a growing
minefield of constraints. Although such constraints arise for the purpose of

protecting subgoals, it is possible to interpret them in another fruitful way.

For example, suppose the synthesizer has generated a plan wherein AGENT

grasps an immovable object, effectively tethering himself to within a small
neighborhood of the immovable object. Suppose then that the next subgoal

involves moving across the room, out of the tether range.

At that point, one of two things could happen: either the synthesizer
could be aware that AGENT was grasping the immovable object, and attempt to
have AGENT ungrasp it (probably leading to a subgoal annihilation complaint
from the protecting SC), or it could have AGENT simply proceed with the WALK

plan to move across the room.

Now, if at the time the GRASP had been achieved and protected, another SC

had also been planted with a pattern which would react whenever AGENT moved

R e

i
|
f
i
{
!

R O 5o i S AR LBt 1 AR AT i i s s SR s L U AN, > e s e

85

out of the tethered range, as the WALK plan was generated, this SC could

inform the synthesizer that it had just violated a constraint.

Detecting such a constraint violation is important for two reasons.
First, it will alert the synthesizer that it is generating a faulty plan. But

second, and perhaps more important, it can provide the synthesizer with a
situation in which it may be able to learn something. In this example, what

might be learned is that whenever a statechange in location of self is being
planned the synthesizer should first ask whether or not AGENT is tethered to
an immovable object. If the answer is 'yes'", it should employ a strategy that
includes detaching AGENT from the object before solving the statechange in

location.

In the CSA system such an act of learning would amount to implanting a
new test in the causal selection network for causing statechanges in location

(described in [R2]). By planting a test about "tetheredness", the system, in a

very important sense, extends its conception of what 1is relevant to the
successful solution of statechanges in LOCATION.**

** 1t might seem alarming to force the system into having to ask "is
AGENT tethered to an immovable object" every time it wishes tc synthesize a
plan for moving. However, because the CSA causal selection networks have an
ability to bypass portions of themselves (described in [R2]), such a question
need be asked only once for any given agent. Because of the bypass which
becomes implanted, the question will not be seen as part of the network from
that point until some gtasg of an immovable object actually occurs. At that
time, the bypass would be destroyed, making the statechange LOCATION causal
selection network once again sensitive to 'tetheredness'. Thus, although the
system has learned that tetheredness is a factor in location changes, it will
not have "consciously" to think "is AGENT tethered to an immovable object"
every time it generates a plan for AGENT!.

Another related class of constraint violation is typified by "the hand in

the gumball machine" dilemma: a kid wishes to remove a prized object from a
container with a small opening. The opening is just large enough to admit a
limp hand, but is too small for a fist, or a "fat" hand to pass through. The
kid, employing the standard grasp strategy, will experience a constraint
violation (in this case, at run time) when he attempts to remove his grasping
fist from the container; namely, he will realize that his fist is stuck! From
this violation, he might be able to learn two interesting principles: (a) that

a side-effect (byproduct in CSA terms) of a GRASP action is that the hand

86

becomes "fat'", something that may never have occurred to the kid before, and
(b) that whenever he is about to synthesize a plan to change the location of
his hand (on a path through an opening), he should first ask whether or not he
will have satisfied the important enabling condition for the move: HAND will

fit through the opening! (a) will amount to learning a new piece of causal
information, in the sense that it augments an existing CSA pattern about
grasping. (b) will amount to learning that a precondition for moving a hand is

that the enablement 'hand fits through constrained places on the trajectory".

3.3.5 SCs as Plan Optimizers

I1f we are concerned only with synthesizing plans which are execution-time
consistent, but which are not necessarily conservative of materials, time or
energy, there need be little cross~communication among the synthesizer calls
for the various subgoals of a main goal. In this setting, it may just happen
that the leftover products of one subgoal’s solution will aid in the solution
of the next subgoal. But in general such interactions will be coincidental. It
would clearly be more desirable to build some notion of optimization into the

control of the synthesizer.

SCs can be put to use as optimizers by a technique we call previewing.
1f, as it commits itself to a top-level strategy via traversing a causal
selection network, the synthesizer '"peeks ahead" a level or two to preview
what subgoals will eventually require solutions, it can create SCs to watch
for patterns which would in some way be of use to the solution of each

previewed subgoal.

Typically, useful patterns will be those describing states which could
serve as enabling or gating conditions for an action whose execution was
anticipated. For example, suppose the synthesizer previews and determines
that it will eventually have to synthesize a plan wherein the light switch on
the wall is turned off. By, say, a one-level preview, it might determine that
among others, one enabling condition for such an action is that AGENT be near
the switch. 1f before it begins solving any other subgoals, the synthesizer
creates an SC to monitor for the condition "AGENT is near the switch', then

any subgoal whose solution incidentally brings AGENT near the switch will

trigger the optimizing SC.

e et AN AILE, S L

W5 e

87

The optimizing SC could then interrupt the synthesizer, informing it
that, since it was in the neighborhood, it might consider solving the rest of
the switch-off problem. The synthesizer could then either reject the
suggestion, or do 1it, running the obvious risk of annihilating some other
condition prematurely (e.g., the subgoal whose solution was interrupted
requires 1light in the room in order to proceed). But presumably such
annihilations are being monitored by subgoal protectors who would complain at

still another interrupt level, and so forth.**

** There 1s a question about whether this type of optimization belongs in
the conceptual planning stage of plan synthesis, or in the execution phase. In
the execution phase, the optimization would occur over an action sequence
rather than by the previewing mechanism called for in the s¥nthesis hase. The

roblem {is analogous to the problem of whether an optimizing compiler should

o its optimizing at the code generation level (or at a still higher

algorithmic level), or simply shuffle the code around after it has been

e sityation, AlthQugh we have

ﬁgnﬁiggidérgtggggg iﬁg§Eg %gsog?ewgegggtigiaggdthtow;rg toptim%zat?oﬁ at the
conceptual synthesis level.

3.4 SCs as Hierarchical Situation Characterizers

It is natural to think of SCs in terms of numerous populations, each
population tuned either to specific facets of the environment, to specific
contexts, or to specific levels of resolution. In other words, SCs can be
structured and put to wuse hierarchically. They can be regarded either as
data-driven or as goal-driven, because of the way they interact with the

deductive components of the system during the polling process.

Hierarchically structured populations of SCs can be put to use in
interesting ways to convert context-free information at the data level into
progressively higher, more semantic and context-dependent assessments of a
situation. Consider a chess game. Context-free information in a chess game
presumably has forms such as: "PAWNl is attacking KNIGHT2", "ROOK2 is not in
immediate danger", '"QUEEN has the following three moves', and so forth. The
context free information is that which can be gathered on a very 1local and
mechanical, plece by piece basis, with no regard for its contextual

implications.

We now imagine a population of SCs whose job it is simply to watch this

i T T § T T v shiie ot e Lot i i N R S o A S A s i S B e SO ot Wi
i S s 000 . b R P i i RN T 55 o e Bl A s VR I g o 3 e o 8 S IS R il e s aie i ;

5 Dl e

88

level of characterization. The trigger pattern of a typical SC in this
population will be a mixture of context-free parts and more semantic and
contextual parts, perhaps things like 'does the bishop play a role in
g; constraining the opponent’s rook?" Now, when the SC triggers on the basis of
] very syntactic information, it will (via the polling process) pose the as yet
unanswered semantic and contextual questions in its trigger pattern to the

%# deductive component of the system.

The deductive component, being fishbowled by yet other SCs, will pose a
new generation of questions designed to answer this question, possibly giving
rise to new SC invocations. Thus, regardless of the answer’s outcome, the very
fact that the original SC posed the question can give rise to an upward

spiraling of more semantic awarenesses about what is happening on the board.

At another higher level, we would imagine there to be more abstract SCs
3 designed to react to lines of constraint, lines of force, mounds of power, or
i whatever. Presumably, these top level characterizers would correspond closely

with the concepts a chess expert employs.

This deceptively simple notion ~ mixing the syntactic with the semantic

and contextual in SC triggr patterns - seems to be the key to many problems of

context. It provides the system with a starting point at which to begin
making semantic conjectures; these conjectures, whether or not they prove to
be true, can be important catalysts for higher level SCs via questions sought
during the deductive processes. In this sense, SCs provide a significant
source of "upward awarenesses" which at some point hopefully make contact with

the strategy, algorithmic, or goal-directed levels of the system.

3.5 Other possible arenas

f In this paper, we have considered only one of many possible arenas for
spontaneous computation: LISP S-expressions moving from logical point to

logical point in a model. Clearly there are many other arenas. Two notable

| ones at which we will take a brief look have to do more with control than with
1 f data. The first idea belongs to the LISP machine group [Gl] and the KRL group
[BWl], and the KRL group calls it procedural attachment. The second idea has

to do with spontaneous computation which is triggered on the state of control

rather than on the state oi data.

R oy e R R g i Vb o7 TR 2] & 0 a0 i L Tt g A AN 5 IS e 20 TN i s XSl) 5755 s U A i, -

R

89

3 3.5.1 Procedural Attachment

Procedural attachment (PA) factors the problem of SC quite a bit
differently from the way we have been viewing it. In PA, code is triggered by
the act of referencing an entity in the model. Illost genecrally, '"reference"

could enconpass any act of attaching, detaching, or inspecting information

associated with an entity in the systemj; it could mean '"the address of the

entity appears in an active register (accumulator) of the computer. 1In a
LISP machine (hardware) style of PA, reference means, e.g., taking the CAR or
CDR of a cell, or changing the CAR or CDR of a cell, or requesting the
functional definition of an atom. In the KRL use of the concept, PA is a way

of factoring intelligence out of code which manipulates objects and into the

objects the code manipulates. For example, if there are numerous logical
types of entities in the system, each requiring a different style of
formatting when printed out via a LISP PRINT, rather than coding into PRINT a

knowledge of all the various formats, each object type bears knowledge about

how to behave when it becomes involved in a PRINT operation. In other words,
printing an entity becomes as simple as pointing at the object to be printed

and saying PRINT YOURSELF!

|

L]
% é There are some interesting possibilities for PA. It represents a sort of
i distributed SC. It is a style oi SC in which each object in the model can be
{ given a priori expectations about the larger events in the system in which it
; might participate, Because PA distributes intelligence, it is perhaps modular

in the way we imagine the human brain to be.

et A

One possibility would be to move from the simple PA concept of reference

to a more sophisticated concept of "occurrence in a pattern'". In this type of

Sl 2]

PA triggering, a referenced entity’s attached code would run only when the
f . entity occurred 1in some special role in some larger pattern. But SURPRISE!
This brings us back to the style of SC we have already considered. In fact, if
we have PRINT "point at" an object by placing a request (PRINT <obj>) on some

channel, we can couch the whole notion of PA in our style of SC.

Eah A Ao o

3.5.2 State of Control Triggered SC

In state of control (SOC) triggering, we specify calling sequenccs (i.e.

E} ,; configurations of LISP’s control and value stacks) which are of interest;

|
i
r

B D e M S A T T B T Ty T

90

whenever such a calling sequence occurs, the system will be interrupted and

the code associated with the SOC SC run. An example would be: interrupt the

systen whenever function GLOP calls function FOO with a second argument that

meets criterion X, and FOO then calls BAZ.

London has implemented such a scheme that permits one to specify an
arbitrary number of such SOC patterns. London employs the notion of a "call
tree" to keep track of partial SOC activations. (The approach is a
generalization of the MACLISP "wherein'" debugging feature.) Current plans call
for wusing this SOC component in his research in learning; the LISP control
which occurs as the base CSA model operates will be monitored by SOC SC°s who
will notice when interesting or unexpected calling sequences occur, interrupt,
runnage through the control and value stacks to try to determine what was

happening, and then... The suspense is exciting.

iAo s L A S Y e U ATy ¥ 05 B S 068 B 0 S s 2 i Nt 5 b A G s o N B PO 55 0l BN

sk

Aol

91

S T N R e

4. CONCLUSION §

There are no conclusions yet. We are beginning to explore ways to usc SC

ia in story comprehension and problem solving. All we know now is that SC
g; underlies quite a few interesting processes of intelligence. How, where, and
‘| when it interacts with goal-directed computation are still mysterious, but

EQ hopefully not as mysterious as before.

N LN R O T L R e R AR L R Ui 3 T e SN b e I R i Vi Sl SRS 2t A R TN L N s Y b — e Sarsc e R o s

92

REFERENCES

[(BWl] Bobrow, D., and Winograd, T., An Overview of KRL, a Knowledge
Representation Language, Xerox Palo Alto Research Center, 1976

[C1] Charniak, E., Toward a Model of Children’s Story Comprehension,
doctoral dissertation, M.I.T. AI Memo 266, 1972

} [D1] Davies, D. J. M., Poplar 1.5 Reference Manual, University of Edinburgh,

g TPU Report No. 1, 1973

& [DK1] Davis, R., and King, J., An Overview of Productions Systems, Stanford
g

3 A 271, 1975

;ﬁ [G1] Greenblatt, R., et. al., The LISP Machine, M.I.T. Working Paper, 1975

[H1] Hewitt, C., Procedural Embedding of Knowledge in PLANNER, Proc. 2IJCAI,
London, Sept. 1971

“‘ [H2] Hewitt, C., Viewing Control Structures as Patterns of Passing Messages,
; 14.1.T. AI Working Paper 92, 1976

[K1] Knuth, D., The Art of Computer Programming, Fundamental Algorithms
(Vol. 1), Addison Wesley, 1973

(L1] London, P., Abstraction Mapping and Learning in a Problem Solving
%8¥%ronment, doctoral dissertation proposal, University of Marylarnd,

[M1] Marcus, M., Wait-and-See Strategies for Parsing Natural Language,
M.I.T. AI Working Paper 75, 1974

i (M2] nggrmott, D., Very Large PLANNER-like Data Bases, M.I.T. AI HMemo 339,

! [M3] Minsky, M., A Framework for Representing Knowledfe, in The Psychology
of Computer Vision, P. Winston (ed.), McGraw HilI, 1975

[MS1] McDermott, D., and Sussman, G., The CONNIVER Reference Manual, M.I.T.
AI Memo 259a,’1974

[NS1] Newell, A., and Simon, H., Human Problem Solving, Prentice-Hall, 1972

[R1] Rieger, C., The Commonsense Al§orithm as a Basis for Computer Models of
Human Memory, Inference, Belief and Contextual Language Comprehension,
Sr?ci T?Sggetical Issues in Natural Language Processing Workshop,

S e

[R2] Rieger, C., An Organization of Knowledge for Problem Solvin and
Language Comprehension, Artificial Intelligence, vol. 7, no. 2, 1976

[R3] Rieger, C., The Representation and Selection of Commonsense Knowledge
for Natural Language Comprehension, Proc. Georgetown University
Linguistics Rcundtable, 1976

[R4] Rulifson, J., et. al., QA4, A Language for Writing Problem-solving
Programs, Proc. IFIP éongress, 1968

[RGl]) Rieger, C., and Grinber% M., The CSA Mechanisms Simulation System,
University of Maryland & (forthcoming), 1976

[RS1] Reboh, R., and Sacerdoti, E., A Preliminary QLISP Manual, SRI AI Center
Tech. Note 81, 1973

[S1] Sussman, G., A Computational Model of Skill Acquisition, American
Elsevier, 1§75 o

{§S1] Sussman, G., and Stallman, R., Heuristic Techniques in Computer Aided

el e i A s s um:n».’fmmm R s R S S i s v,
{
|
|
Circuit Analysis, M.I.T. AI Memo 328, 1975
q [SWCl] Sussman, G., Winograd, and Charniak, E., MICRO-PLANNER Reference
3 lanoas, M. 12T, AL hemd 203a. 1971
fﬂ (T1] Teitleman, W., Interlisp Reference Manual, Xerox Palo Alto Research
E | Center, 1974
9 bE21 " Tester, L., et. al., The Lisp70 Pattern Matching System, Proc. 31JCAI,
g Stanford, Ca., 1973
. ; &
/4
L
k: |

AUSZ 812 MAKYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/6 12/1

e SPONTANEOUS COMPUTATION IN COGNITIVE MODELS.(U)
JUL 76 C RIEGER NO0014=76~C= 0&77 ,
UNCLASSIFIED TR=459

o i
— S 3.2

'.I
————
—
—_—
——

2 i

ll=

™

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

R et I R

B e a e KL D s .

94

i . i g 60 £

FATH))))

Apprendix A - SC Code
(REVERST

CSA~V

“ p
b«

3
i
B
1
'

COND C((ATO™
(CON

ONS

(?IVUN $PLARTT (P TREE PATH VARS)
(p
(

&
~<

aco

(=4
-

$1S-
SMAKE~VAK

)
(e
(

»

~
~
%)
[*4
~ <
~ >
=
- ~
< x
-3 -
<
-4 o
<
> L%
J o
L o
(%)
' wv
w =
» -~ O
L-4 -~ v
~x W W
~H w ~
Wi~ & - ~
o« o~ - o
<2 4 o -
> < ~ -

Vs > (% o
G zvr | - -
Qi wd b SRR S o)
LI - LS
) “w Az ww
NI | ~e e
QNN WD O~ X -
ED N A ZFiree
TG, A g «“

O~ LW i -
b TCwClag
-~ ol Leg
~ B I T
L
QLW WM
WS WX

Wl | At

@ Z Ui

- -
LCaKaoca
15 arrree
We Nideide
M ST AN
< LAr N
e

Vil g [-%
~ X
-
- i ~
woo ~
- d
-« -
wx [
~ - —
»-
~

VARS))

TN

TREE NIL NIL)) (CAR

LOCATET PAYTIRN

ATTEGQN TREE)
1 (3

TREE PATH VARS)
A
(

)
SMAKE~SC-VAR PATH))

VARS)
S P (

N

ac
o

O~
o

o~ ~

NZA) wennO

VAV WOA =
«Dxnx) [}
o L st TN

Civw > 00

[
~ -
N

ar- " e SN

1728 ol o
-2
Coxree
| v~
e ad bt
;)
< -
>aw
e O
(CS'.L
o O
Vigge 2
VIlL =~
LD
(EIN
(=2 d B
© wVZ
WO
wo o
[
-
o
cuoO
~Oo0O
WX
Vi
A
-~

T M O VR TIgN — ey r we m T T T VT T e g ey R KT e 8 S Sy o ey
" AP ag Yy]

TREE)))
)
($SPROUT TREE)))

NILDD))

(T (RETURN TRFED)D)
(v

VAPS))
OMF
SO
AC
¥1)))
“FRCE)

0

S

L
- L

MAKE=C
((CDhRA
(T (k¥

SC=FREE~VAR

..
-~

(D EFUN 8P
(COND
(CsETQ

~
”~

~
> >

aXx
oo
<
Lo~
LR e

-

v K

~O- N
~ =i O~

¥ o O
~ s L
& wox
g0 Vo
oz <
"< -
s
| -
Ve d
- -
- v
) e
~ >
-~ N

o~
~xX O
e X
o N~
O <
v FC
L =
Faq wo
% O«
- L
D >
1O i
-1 <O
7 1% - |
Z& Eun
Lo CO
w> v
E e e
2T Xz
DD DD
- e
e e
oo oo
A A N -

w
i
¢
|

< v ——

e e ————

T L

S

;
M
|
i
:
i
M

TR e o

b it e e —-— s - N S . - pr—— . L R S R T T S T XAt g TR R4 e A A
4 o — R it SRS S X e i b i
3 ~
~~
3 = <
- ~ e - f
: o]
4 “ ~ ¥
3 o iy
! ~ 3 Py w
~ © w
~ ~ @
A - -~ ~ [o
: - - -~ ~ < e
- [*%} " ~ o
[*%] o (%] <4 <
- @ 2 o < «~
“ - - " 2 (&) D~
4 < -~ ~ [+]] L o~
E & ~ ~ - ~m ~ ~ W
y a -~ ~ = ~ ~ ~ ~ ~nx
% %3 ~ x o a~ ~e o - A
g " - - (-3 a we - ~ Ja -~
s ~] < o ~ ~ - -4 2 ~ - -~
3 [+ 4 Q v wes ~ @ ¢ < ax Zoo @ -
3 ~ - - ‘A won -~ - (%] (=] w < - ~
3 ~ - @ ~ [- = i ~ —_——— o < >
> se - < ~ -2z w - ~ -~ ocoxXxMmno o
& . L > -~ [= oo v ~. [*%] ~ Z s N [4
-7 Z] — ~ wD - 1D A A~ -~ ~ - &d (-4 o
; = <] © ool x © Xw Uk ~O (-3 ~ IC o~ < < J
= Q [w (7] el < |~ e~ W w4 40 [o WA v A d
w Zz ' x < > nu> O~ Jdn @ O] ~A dEZNW A A w
5 - o » = w <or 1 o i~ oz <@ ZzdJ - z~zoDa o %
8 ~ o © o ¥ >r W axA i FO om D w Z =Z>0 e = - 4
- NS ~~ hd < ¢ W PY R T T wa Ow a2 Z0~] ~ Lreuva Z N v T
4 x ~ A 3 (SR o woun ZTZ OV Fer O~ @ 0 v wx — .
t L& o~ wd - rTudg - ~ 0 O~ & < D - QAwr = o = u o
3 e &~ [eRTR TN .= ~ MO wo § (O R | -~ o~ Yo Zrl « W Co~ bt
i o’ oo~ —ated 2 ~e U (S e A= T “ [I R [ad wawzzo O a~
3 (=3 SO W — A~ v ooQ N A ~AEZA~AD) -~ oo eI W ~ o~ <]
e wun o w [] 0 W - 0d UV AwLO 9 TanZxvi w -~ w
[Sh - -~ 2z - W e N A G~ - o o & L] L log- Mo - R wuva \
VN ad w. < - xZ > <> LU Z Z~nx<Z - CIvww O L g ot 3
E (=34 G (%] ~ =0 ~ 0 Qs - € LWUoWw X & [ST 4 - 4
-o o< ~ (¢ >xZox o Cca v aav - Z w o -—a wn
@O~ - AN e covan v &2 acowz x o o -~
- > ~Ue e -4 TAw © ~ XOVVYUA Vo wg O ««g o axr- ~ L~z - 3
nu - war - ruww b~ © Ao~ A O Jdo was x Zaox co< ~
= O wowm 4 CLus e VI o L - N N & - - (%] ~l < -~ Qi A
w -2 oz Lo - ocw = ~e L) C e oo W 2 W w <aw ~ —‘
~JdC o 7] - < &x ~ Z D2Zm TV OFNw ZJrex ~ Ul w . oo > §
4 3 ~ o z W ox > O ~CO ©CO0Z rFrZ Cwo D™ VI ~ALO & - - ~
. - (=] wE o e Weiw W HO VnZx Zzn ~AQuwroaot . - xwn
k ~O (21 [*] XTOW wx W WY wwie AT aW s - Wi wm< < o
. [~ 1-4 ZNw - Lot 4 d w W Ew - AL WO N W e TE x S wd -3
xEwo c2w o & e - - O AwA Z aZ Oaaw < ~~ (%]
© <« Yox ~ XL 2O "~ a ——_ o~ a ———llod o ~ <
< O% ~ - - < U Dw b 2 Ld) o= O P z - NN ~ \ b =
= [>dan~ a oo N2~ 2ud o WO
[V o o~ [-'3 WAoo ~ ~ o (S] L= 4%} (™) ~ wWwLdNaS 2 L ~ -
4 4 -<o VOWw ~ - D =0V ~ Vise AN N b8 ~ -~ ax itvwdl v ~ »n w
& o T A~ ~ X2 X ~ v & G W -~ P I D - ~ - b
: i [99) OuVid L Z D - & L~ o o ~ ww N a - o | 3
L | “ao - - > =49 (g w >> so 00 -d “w v < - -} ¥
i b 3 Zoo L x@E e > () -3 . T oz woo —~ —no. = 2 v
g E w D was e o w= ow v D o~ 0 N z IT L W . » 5
£ xwvir xo x we (%) Nal < < wa DSOAE] A
1 M <o) g~ - a <~ e P - ~~ ~ - LT~ - v P
¥ awnz Fww [%] Ew N Z o ~ ~ ~ wVinw ~ —
- o Ay »] vy B OWE ! el “ I3
i 2 a Lad L = o :
3 Tz < Z & zZ < i d = o2 = m
£ . =522 290 = 29 DAOw o pon o ' J - m
o 4 - - - “we “wow (=) e O -
§ Vb d ad -~ - B - - o i~ -t
; -X-1-} a =) o aw I-Y- - 3
{ 1
)
M L v 4 -
o
§
¥ * . "
0TI o 5 P N R) 4 SOV 2 0150 5 e

iz . o - . PR L T L O

b0 i 60 SRS

B U

A S RS SN TR, GO Iy 3717

P . S BTN 0 SR YT R T

b A i B DI s e e MY L 513" i

Ty

X e ARt . 3
2 i i ORI . oL it 3

96

“(CUOTE $C)))

~ ~ ~
~ -~ ”~
~ ~ -~ ~
- c o~ 2 -
= ~ % ~ ~ @
w ~ & o~ ~ =4
[« ~ ~ a ~ ~ -l o
-< ~ ~ ~ o W ~ -
a ~ - ~ am - x ~ z oa
~ ~ 2 ~ Zo w + Ze
- ~ ~ w L w < T A - S
o - ~ x < o - - N
U z ~ < w an - O ~ =
P) - a - < b= > w
] @ < R d a o w Z ~
~ < < W e w ~ =) =4 -~ o ~
~ o a X <« o LON LJ - < <4 -~
~ (=] < W] ~ < 2 o - -~ o~
- " -~ a > ~ P e W ~ w "~
< ~ (=} w ~ zZ22o20n. 2 s = ~ ~ @ -
o] - o - ~ WO WAY < ~ < ~ - <
-~ (¢ (=2 -8 v Fduw EZAg o ~ z - @ a
~ « @ I ow x "3 VJIT V<~Ax ~ -~ -3 . <
e W 4 > v (@) W AP Angy Al Z e~ S A < a @
Cuw > W (] T OXwWO>T VK ~ o w H a 1=
| < v - L] —— 2 Dk~ ~ @U@ ~ x =<
ww o ~ a w ~ oZ «» L Z W > ~Aesx O> &« ~ e o
[© P25 TR | L] N W VN O ITA ~N mA- O < - ~a W
) - b o | ~ a~ (=] = [~) - [< o ~
i o < © - - ~ A~ ~ene O o (PO} & W ~ ow &~ - o~
wo i W 5 o << v~ oW a< o ATXAL e PN <LSw wAx
U -l ~ - z> ~ - < < Trwa W <l - ~ o ~
wn O -~ ~o - oz o« Z o - WoOITwx J<a o -~ o -l
£E©C 0 ~c “zg vV g« <O ©@ X =xr a L] ~O~ az L
~gnw 0 2 .J < wa. e - Lo waw T e —ZO0 M - w - o ac ==
ATy < W W e o & ~0 VW < o (=] o Cuw -t < - v &
~ w = xo A A~ U o = = - z G W VW a w ez ~ ~<
- @ ~ <t ~ ¢ ~ wvi w o< Cc< ~ ~ N KO -~ > - ~ ~>
~ ez QY - - A~ & —o Wl i od 4 O\ s M A~ - -
o<l C Zawz ~ < —-Z b e - a LNL v 220 Wl <y o L =]
DD L AXV Wkl o~ > <L . ~ 4 wWnow < e Z N W -
LV W o EGotut W (S ~o L 4 EANCW JdE QT Aamnmed 2O Zz
Eow & Z<d€ <) Ja < ~ ~ o w o Fx0nOW an Z AR D SO —
DoCaem~a wur oCit W o oz asnx v & e =~ ~
NG e Q2 b ~ ~ Ao ~ >UrXrL~ o VX IO we
W W < XV IO A~ - (21 - T ~ x O o A & Vi rFuwwhcane
ELALCLIALE AONDEAZ < Q@ ~ ~ O vaCwd ~ = Zoadl wwewn
AT TLULUGW W wasTwuo @ ~u el & ~ . CWw~ UL -~ -~ < B ddL
-~ CdL2TL Z2OXANDD o IO O ~ Lad F O wuaCr—nAan ol . 4] d d
S A 200Wd Oweww o Or - ok o o« LEE VTD AL Lo g
Lo e Sy e T oS | - e Qu~ 2z >4 < GIOWEw™ V2 o~ TIII O
- Ll A@XOX QO o O b w a WO <« ERrmAVTY gD
Ll e O v Z Ow ~ 3 [-SN-%s g Q. [} - AN e L™ P =34
W Jdow g O O - -OF o -4 N> WU Z22wawuneloavo
: 1 o o - W “ww -l < w LSO WUIC IVECdIZILIZ IO
qANJZN=-Z Z A - hd az o E W o QLI ECQY DY UL WK ww W
ZFdavig <« o wo Zr o)) WHEDNDN = L D A 1=
D UL W - o - wi 2 ~ - Co mul wwx (=]
Lz ™ oy ix z s S = - FLumZWuee Credoacs <
SO~ ety (=] -t e O Lol LLE T W VCAD -2 -
Ui~ QL O © wd v 2 | <L XX~ SO w0 -8
L ~ ~ oo O = w - N X Vnno o
Vo <o Z0 e - o~ |l CLUI v~ g
» Ao Lo hd L] (%] - woZ -0
SO LG OWO Q (&) wo WS-
L2000 ZELVNO P o &Z = <0 AW (%
D v =0 20 b] po ¥ 4 e d et
-a -~ > “-ts “ wo
- - d L L -
(=] o <S o a
~ ~ - A ~
.
- |yl -y T Rt
e G b e b LD E e e e P b b St R T Y T .

W”
|

N G DA e N e R

-~
-~ ~ ”~
o ~ ~ ~
~ = ~
-~ X~ ~~ O -~
~ O~ . Q> ”~
~ G~ - - "~
> wm Mers ~
o cx o x
& w wo~Z
e zao a~ao (-3
~ “ <Q ax o
~ ~ g <Q0x2Z ©
e (% v <O ~
< X2 “a
w o~ WO AN w
P A ~r—-2Zo o
~ ZOw O0oW .- o
q ~ @ o Do aw b=}
4 ~ < QDen xoo<9 o
%) (] -oe LA S \
‘ @ ~ wZ O e
¢ w ~ U ~ - - ~
i i K W >x@ [| ‘w -~
4 A < < - - e ua - ~
£ ~ W X d A wa o> - -
" [72)) -l AL A i el — [~]
m 7 i =3 o awv ~ - ~ -~
m s, Ty Pe] < w o~ ~ -~ ~ Z
3 L - - O - > w <
£ 5 R LO Wos ™ w 3D -
A : - wil Zaco =2 © -3 z v
1 | ~ ~ i &L wl < -z .
§ $ ~ ~Sw © JOE = AATI o QD e ~
i i ~~ WOE A AV WD ~ DS ~ ~ Z ~
¥ - ~ ~ Ly I ~AH R AR O ~ — ~
H = ~< ~ o AT ™ ww = O - - R ~ 7] Qo o~ -
1 et ~w oz ToB E & [~ ~ Z~ >a. <
LI~ ZTEA~O =< Wwe © W v gow ~ v: O~ az ("]
m W A x>0 TAw o - mv ~ O O~ <o -
u > w2z ¢ Qmw w Z o EF A ~ Z ~~ 2 < ~ D X
4 wWa = kD VLW X - & SLw ~ - 2 L gs ST N o - EAD—g
3 OO et MOWLIF- OWJ w © (] au~x O~ Wik XV 4
2 3 (= TS Wz o P <« o ZZ X w v ~ o VL G §
§ 1) >0 Urmae Lo w0 W B N P Fa-YorN i L =)
4 Vb 2o oy x 1.8 v ~ Qe - —_Z w | DV W n w
) CuLzOuCur i o B W W oo ~ < q L Z ~x (ST - .
V@ anxr b Zwzwr ax a4 o Za ~ 2o =l [T VW - 3
2 % F L) e EX B 2w 2 ~E ~ xom ~\ =D (34 VES fwd -
¥ N g WX k= el d o] W FTe Q (o] o - o Vwa b
: 4 GOk - e LZwE W ~ [o< o ~~m i ~ iz > o
5 WO AXQ e ~wWo w Lt e Y | ~ o Q. 1w Xm N e g
T Lma wWow DD g O o = e e Qe a we > g
1 LVl il et XL LI O P = = Qrd ™o g ~u -
: ZLL L X TA OO i pe e D W < NN p Dxay (=] e oKX
g : Vs Lz L i o (]] e oo —— ey O
& LI i SO OO ~ < aw O i s —s S
O - Y = oUW O A > Vb= U= %) ~ LA wedy | wDw - 2
{ & Vil Gt sl i o L w O ZTilonz acan wea v -
: GCmYE o= SowwIan -~ <D W LN 2 - o & O e
..M Gl o< ~L T X AD * - O - put Lo R ot
¢ A DwZZozaz U e-wE -4 vwn 2 DI W Qi o
m < « = Vo < @ 2> « Zeoeor QU O e~ -
e Lot ol ol o s A IOV =2 — D L A P Vi
- LD E e Co T g - &« - ©“ & > -
: S0 L =L (G ESVEspTy w O W o W & |4
it s b v e X ZOwvivi e @ 20 « =2 26w 2z §
N NN DK e ~ DX W 2O 2< @x 20 .
- “ws (") “wF - ~
L d [g i - - - - S .
: 3 o . a a a a r
. 4 *: A £ -, ~ A ~r
W m i .
m “ 5
; : i
1 &

el e et I s L S S e g

ey e L~ W S R S e
3
}
x ¥ ~
L o
| i - <
= -
~ -
. ~ o
(%] -~ 4
z [2 e
e~ x < -l = A
Z~ o x ~ COC« >2 -
-3 - o ~ Ouxw ©O e
< o x o~) ~ Vaod =0 r
—d b LY - 7 n
avw -~ ~ (-3 Lol -
W T - ~ < < - DA i
o= o=~ ~ ~ ~ — CSmZ~an - 7
(S 353 — -3 ~es Q. w =0 L ¢
o ? - or g - < AUE D 2
- w O - - = OV ZO0wiiw £
o w< ~ 0 w « O - < ~en T woo b«
5 2w ~ B ~d “w — we Zrx SR> 3
.m 2O [o Y - & J Z~ ~ = NSO - 9
(5] < - (") - LAY Z~ 9 O D .
TV ~ i WE < < x - S L
< oz ~ = - O MmO . ac TE — G W S 4
; o L adad ~ b4 ~ \ < o < (ST > < L4 C <r
§ o s - ~ ~ ~ . a~Cr - Ll ot L] o - Zw’' o <
4 © 7] = o - -~ T rad W - x = o « wz o
= - w a - ~ O wa O - ~ Z X VO - 3
5 (&) perges Z~ =0 Vi~ I a W ~ " - UdE WO W
: © vl) w - ~ T« -~ JUw < vV - x “w \'> w wnuo e
% = ~D - < ar Ok ~ w w - Lk -4 < - w oo~ ~ v 2
) sl - - = O «<Z o~ a O WZ e~ a ~ el - ~ A~ O ~
- A S W e @k « PG 2w z — v - <z © 3
s} i T =) a T~ - ~I>LOX - - o w - <a - we
~ TFTOLVOU~N P~ > wa w WEI O > T - LR] - < VN > Zw
4 [Lt XA - & G J [*¥] ~A POV Cal ~D W o < -~ W O ww
| [} AR T Zr e - o L ~ G T~ ~S Ca <X
i 24 TN w v - << (& zZZza S~ <xh x T A~ > wo
3 & oW ZF A A& x —~ e} HLZO W A A (Y [O Xw O eC J4dZ 3
m VE FeE o QX W AAAD Orww 2 ~ o -~ o~ Arma GV i e K :
bl L] o Vu VAW QXpewr © ~r T we XZ v~ VU wiw Iw
3 ~ T ~AVOL OO0V D <~ (<] o WD DX AN N i = m ’
4 T~ OCE I x =D AvV-HIC> W e x @ <O ~ e EDIUWOw ww &
E QWX VNN Qg (5] O = - <KX I (< X&) auw e -~ DX W 4
9 -~ = Cr= -\ O~ vV < - ~ v dod X - Z L ot oL L b
3 T =IIa 4 RXAFIT =i x A ~ ~~ [0) Wl XN =5 5|
! vee Quuo a WZRUL T OOmCA . O | W - ~ X zax el 2] |
wrn O = Y AZeuUem OO > D ~ T L QUi 0.0 Z>w & > ao |
M — Ep - AT Jx =mEPFO ~ - a wa << L L)~ wAnOOZ .
3 <A wDDOZ OO Al & A VN W OO 2 Z>a Tr=0a TAd~ —— O o]
Lrra Z0 G © e ek wh va <aox (=4 ZF (%] < (L g —-— wao . : |
o Z N HHAP WeJda 000 GAaQDe - P o o w IR ST (O ST T i *
B ZOm o 2 wdl < Ca<<o - coow -~ v s - W Oww a
LA ZOAZre e e -0 T Z i v e -o VW - e u =Lz &
T~ - Oorz 3 - ~oXx Y e ZV~r ' |
W O TPt pm =D - oww WD % (%) T
o ¥ ITE~0D002000D0Zr L] Lo d - > VI > o
a Douwuwaiicacao~w o -t - O ~a
4 TOHRVDHAMI I A A X ZzZz Zzo ZO O L W e = .
=157 ~ DXV Y e W e W SO0 22 Do ax 2 = 202 5
- = wa w-o - v hoted -z wou ﬁ
5 L w - 4 -t~ v [V - A W L . X
Y o a a a -} o [-Y-% T
U - ~ - ~ ~ ~ -

o Ry Sl TR A R B

i wan

o e

B . s i

;l

99

RESP)))III))

IPROPAG
Wnlte CAND

(D EFuN

AT ($GET AT MOVING)))
“ORJECT) SRVR)

“RIGHT)))

“CHANNELTAP)

)

B e e L

T AT AT O P LA

T RPN T T VAR50 S et

R S i i e AR . s

oy o A v M 8

i K

-~
w H
~ pe | ’
~ [
~ > -
~e =3
s -~]
o~ b | o
DA - 4
- -~ -
wese -~ =
~ MO - - 3
-~ WO o~ >
~ ~ p W] ~ ~
~ v L~]
-~ - I Or« =
> w -~ DrIwWwS <
x~ -~ g ox -
x QL o ~\ Ovwle o ~ <
- =S5 ~0 = > ~ ~ x
< [+ X7 ~O ~Ne D - w
(-8 W ~~ ol xzaol x o -t ~
~ ow ~n o O« - (=] -
~ (7] o e w O Vxvdox > -8
I~ > ~ oxV wa-ws O ~ o -
— ~ [=t (=] (¥} - |}
Q ~ <~ Q. TN~ [} S Ll - - =
.M . W o~ - o~ LT C T x (-8 = 2
o = w L L~ -~ IV L o 2 - =]
[~T Xx L <Lnn . Vi s el - @] i
(] < - -~ D~ a O R] = x e} -
2] o L v~ ~ A~ [<]-8 ~ (S N~ > - > | i
9 o oo A W - N- A ~ e~ ~ PR o
.w te S M - Dwe o~ - oo e o~ >
o — A~ Q X s dnan~ - woa a T ~ (]
o o ~ 2z (PN DA g wOA " oo -2z o v 1
S (=] (=] ~ ~ | AL A o L . & Wi - o x
- 1 ¥ XA e O o~ ~ cc oo « = el
(%] DA - 1} O™ AN -~ ~ [« IR TSI, | e N = e -
C_ - a v - OOouw VI Z -~ - << .~ s e o <
v L Qe LCNOaC DT oo - W dd< v ~ ™. -~
x x 0w ~C ~o IO - D " Vi LA o Tu~n a » - .
.m. - v onz ~ P T2 Do T S PR F3 O =x Z W oA a G~ '
=] < ¥ N ~ v W c v cw ~ <« rva < - - £
Q G ~ N > [&) ~Owa o ~waor-x = -~ ~ O KL -~ o |
[=¥] © Za. 3 O o~ Ve VEY Z i = ic2 Ll xa
£ = 0o x o ~ < wWeENwWwW Ign - ~a - i - =z <D
< > ~A WwTOVIwm o - SW FlEmr e~ < oz e o~ - O >
w T L QO wv AT alUmmnw W a (o) -~ = - ™
~e - >a L« O ow ~ AYY(.J((T?. ~ A o ~ > W -~
Vi X mAT~A - m r ven W o >go O & XXw a w Vi~ :
~ G | - e ~ . AU | O Vi ~ - - @x D -~ Lol .
~ N X D L WVIid e LN I wIZr-rS TOZO M <~ - o -~ - 1S é
WV © >0 &N ~ G N muZ Lo FEO L X - o P g - N e na 13
X I STl 2% EMIENOG dvwww SR~ o - L ——O
-z Cwer Hwn Vi o NC HLHOU QN [l "o e A) ~ — - -t
< N e = g w o e g o C2-00< ~ “w ~ x o Qo ~w
awn Taw woz - A~ QN goo eviz Ta ~ o aswn ~ -~
| = - 1 L =D~ b —-00 1~y ws' D - Zaw OO
- <L O [< X%} v’ < o e w o> I < =3 1o ~—io é
(=X 4 anz ~a W [721% B 4 via -0 o wa < ITxw TC=
wa 1w W o @ el ~~ Q@ L DA oo e @O m
e e v = rext 2 Q LA AOww = s D - -0 :
> e > ~ i~ < - — - X~ & & «r 5 qaq ey <~ ¢
vi (%0 ~ O e =W hed O b] [P 4 EE @ - m
k=] [G e e h SZa - i i i O - .
- a -2z o Sa - d - - =3
&< < = & w—a z ZOViAL & Z = - =z 3
2V 20 DSVNE S 20 DE ~ o0 o JUTTE, 3 o 20
-0 oo “ oA o “wa - o wy,va -0
Ve P-4 - - -y e~ -~ - - -l
a o o o a o o a
~ e ~ hd - - ~ -
§
]
o ai 1.3,111.: £33 ikt i 42 1 i S sy — T T .i;v ™ N San ~

s iy iy

Sl ey
|
|

~
”~
~ ”~
~ . ~
2 ~ - ~
E] w [o ~
w ~ - ~ ~
- ~ ~ @ ~ ~
b ~ ~ ~ ~ < ~ o~
(= ~ - -~ ~ (&) (7 B Y
] ~ -4 =z > ~ - A~
3 e ~ [-8 (&} [W e~ ~
F4 w - ~ - () E o A ~
w =) - ~ A~ > L @
-~ a. b 4 ~ - x - o e~ o
- o \ E o v < < [+¢] ~ L
3 es A~ - ~ Wi oo ~ Py | xe
4 O A~ 2 a ~ - ~o ' o O -
i - ~ & ~ - Jw O ~ il aQ <L o ~ -
- - o e A - \ el ~ »
QoA J o] > b rd w2z < e ~ .
00 a o > x o | o 3 - ~ -
g < 2 - el Or-nEkE -2 @ x e o
“E Je - o £ > w - © - OO e - -
: o-ad ~ (& elid- [1% 4 < A) v z
4 Yo W - o~ < SN wo > < »wo - o
J So L e I ~ - e b= o~ v @ ~d v ~ b
3 i S - ~ o~ a oD < ~ ~ ~ (¥%) 1% ~ ~
i - AN — = ~ Do S A~ ~a < f ~
¢ C1vel S~ < Q ~ -~ o~ LU T e e N ~ P~ =] o~
3 e Y- a S o~ -~ oa £ ~ T o - -
‘ - X v ~ o a «o &= - o ~ o s I~ b e
i [ol N Sl o ~ a > > LA s <= - ~ LT e) o
‘ - todire T . -~ > b T o - o - ~ w .. ~ L
3 (=3 il Do -~ J x ~ o ~ - - < - &N ~n 0 ~x2Z
Y - CX I V- T o e > W - -~ ~r- (=] c N ow o o ws Z ~g
1 [l L LS b S | (=] < w2 -~ [N -l D ~ 2 = WO - 0 O - o
e R = o - = Wl b WY >a O e - - L] w o - <
S X R <t - & G W (- T Y e « - Z ’ t V> vl
e~ - & - > & S -1 o il) ~ < o wvd v <
~4 1 ~ oy = b 4 W W A % ad- B - (%] KA o ~ 1w < >
ke~ © [-+ o Y |] (&) o - <N -> D wo
D DALG.AN A ~ ~ e Ewor o W J ~ S0 - ~Z
<LeDr ~ o « ~ o > L G - & - - o o~ e L ' L=}
R Swea Jdo a ~ > - z TOE W L ad w Ve @x v o x- w -0
4 Owwwwe [N A > w > ax x L@ ~ AO W W - oz O — ~
- - arJd o had w O3 Sw < IE 4 owv ~ @ Vi Dw <« *n, =
A » L >ad - - W W S Q e O A L - o~ A2
o | B od - ¥ & e o - 9 R . O e 4 np\ (-4 a ~ L
i v i - @ 1 o 8 v o z < EN N ke~ i T w S A
H M e wuil z v v g =a = ~ ZExar ~ DI 3 eses o B T >rn
aad -2 L] = > A N s 4 T o~ ~r < " bepe ac =~ E X e
OQxw g2i (TR ™ . | E W - = s Ll -) 9w LXL = LWLVIO 24
wo [V -4 - a | i () - - - o weo aa axa v T | wIDow
~ | O £ T 3 > > - <o2 -~ [1l = Qo - W QW =
- wAoAwwo > - W W ——) wALFO A~ — Wd = Vvow Q o O vow ~ <
o (% T T Sl o KA uDd O~ ~wIg oA s WO o~ a oxX <« 8o - -
fo « 4 I < « cw [=) wa < (L e ~ -~ &z & c zia ~
czZ X £ T £ X TXTw < X W w w3 W B~ awwo S DO L« ~nZ
3 PESD. e (SN | L] L L | O ave a2z [Vopees & x> o © Or k= (~0 (<]
< < = e - Lo EL I 2o - D& Q- Cra~ o8 W D W L L, w
1] o < @« 2D 2 i ~X wwoeao O & ™ Lo &2 2 &V Q Jdvw ~
i - ~ £ & a4 o - o <« © =Z= Cr e DwUV WO W 3 DV v <aw ~
1 ¥ B 9 e B O VWow Fw Lo o B FEw avw > ~ e "o
Ld Zw ZO00VVUV B X L B VL ww W ~ N o
z 22 2 2 O Ow DR www ww Zza w Z0 J - c T |
% 2 2D 23D DUV e - DL - S24«w x a a - 20
b L N . S W o Wit .Tm " “w g » Z Z [P R)
2. — - - =3 -l L i ~, - Vi
1 a o a a a ~ o o v W ©w o
~ - ~ A ~ ~ - ~ el ~r ~
. .

—
o M |

s G

A TP Y. AT AR AT Y AT g e

~ ~
~ o~
~ ~
@ o~
@ ~ .
~ ~
e z x
x o e
< Z a
o oW z
-~ a -
: (S ©
g a « -4
] | -y ~ ~
: i < < = =
3 TN i w o
N -z ~ o~ - -~ ~
WX ~ - - ~
& W - ~
- [< - - 7,
s o T J 2 2% b~ 3
- D - - pery o
~ x axr~ . &= x bost
~ wLnuwan~ ~ <Y} o o -
. ~ ZaoN A~ ~ - ~ ~ [}
~An Z o~ > W z
~AQ OmO 4 -4 (7. X~ ~ ~ -~ =
ADZE D - s (1S ~ H H -
QL™ waZz Z \ ~’ ~] . . 1
Ll el 7, ~ ~ ° . w
XD CwdaCw b~ ~~ oo - + (] . (S
a Cwwer e A Q 4 - ~ - - <
ST ~ o~ xeg = \ (%] w Shye
o~ T o ZA~AZ Ow = - &
(=] -z woe~ng O - o w w w
- ~ Lo Dnwn o S OAdY v A AW = (%] « —
- <z £ G O X a AN o < < -4
“ X SORL - <IZ O & - I~ P~ -
9 Wl [~ [T e - @~ @~ L]
< W o <SOZWw ZFa Q s> © c~ an w
3 w < HMOX W iy O e Z F 3 2 -~ s A 2
2 P ™ 2w - o< < o H H <
104 ~ s 4 -~ = -~ -\ - - - o
5 - 4D Vi @ Xt PN Y H ~ T ~ Zee <
e - OXQD wd > A A -l £ W £ [
b £ Duwa N av Tmunld o~ o w xn w o xwn <
A ~ o L] = =4 -t < - oz - a2 =
k b e @~ o~ OO T 'S - O - D .
- o el > S 2 WoL~Z 4 -9 a L1
1 @ ~ o~ - > - > ~~
as T o @ - ~ - O vw O v XA~
. ZZ - Z Lo - e 2 o e @& - X
; -0 W Q U2 -0 2N - [P H wAns
J mw @0 (S AN ol U Z2EWV ZEON >
T i Y » LTI] T A~ ("] Wuaxa wWuga O <L
- & O~ (%] - ~r- < -0
& woo ~ < ~ oW —nw Dawv
(L el N - a - d o a o @® oo (g
3 oC wZ 4 <~ < C.X e xm G.X ek x o
! & 3% =1 (] >z - PRI M sew or-x
: Q CUw (%) w < - - - {Ow
] ~ ~~ - e & wwo “wo wzE
o~ ot L -z -~z L
‘m s raa o< »
Y ~ ~ o
= e 2 zz
? ~ D S =<
i [o%] wo wo -
v - d o
1 Sl ~ a
] f ~ '~ ~
w« AT o i =T s 2 L Lk - o s 0y § ol £ ack Alah ¢ i o e
.
o e
I AT e

S AR e

gy

e

AR U RS ST

IRy

B T ——— T ——
T e S AR R S A SR U BTN AN, o o

S e

JOSATS 77 oo

B e B il S

GO ik o ok

Py

e e e et i

103

——

Appendix D ~ Context Code

N

ONTEXT

(caR (FGET 1TEM ™ 7C

(b EFUK SVISIBLE (ITEM)

“CONTEXT)))))

SGET €

FCONTEXT~FILTER (CALDS)
() (CARrR (

(FILIER CANDS (LANDBDA

(D eFUN

“CONTEXT)))))

(SGET (CAR C)

K) C(RETURN NILD))

“CONTEXT))
o7

O Ll X d
v OddviWrew
OO O =D
Loae Zow
XNt e DI
et -0 W
- -\
(= &

~ g
U -~
- ¥ Jdo

vuwz
~ L 3~

“wa P g 7Y]

ONTEXT ()
0

~ VA

™ tt>
< -
o > > -
[o4] PeIveR]
= g

~

SDEs
Lnan

-
o
>
w
-4
!
—
x
w
-
2
(=}

T T e T o)

A SN R

T T Ly

-(DEFUN $KILL (ITEM)

”~

~

~

a

<

—

-

w

~ o~
£ S

D w<

e X

< zw

o «|

| o |

woed

L B]

& N

W ue

L e~ e

O xQ

~T o
EDA o=
wert o
- eel
—-_ENZ 2
DAz

Lip- 0T

(EVAL (LIST (CDRASSOC

(LIST “QUOTE ITEM)

“CLEVEL CONTEXT-LEVEL)))

(SETG CONTE
(SETG CONT
(¢
T-

CONTEX

{D EFUN SPUSH~-
(COND

VEL LEVEL) (SPOP-CONTEXT))

“CONTEXT (LIST NIL)))

(D EFUN TINTRODUCE (ITEM) (3PUT ITEM

ACK)))

~ -

o x

C
Y

O oAU
QO AXOAR
\ MU X X

wo O+ ~
e ouaan
~ - Q Sua
E - gD a~
Wred OO U
—-wz << LA
MOW OJddrXoces
~ A Z00OVWWwZ
- axXxZ

PV e e
- ~
O

VVWIEZO

OoOw-uvaz

—~a>SC

“e Lo

(DO U

ZOoxa

DX

- o

v

o

N

H1
SVISIBLE 0BJ) (3$TOGGLE 0BJ) ($KILL.0BJ)))

(D EiFUN SHIDE (0BJ)
D (3v]

R

(D EFUN SUNHIDE (0BJ) (OR (IVISIRLE 0BJ) ($T0GGLE CBJ)I))

e AT

o _.m_;-‘--- -..«‘TW'—-"-'-‘V' "W.-. t‘ .}

TR

s

PRI N

ey

AR NN Ty | 4 A AT R0 T G N S W

-~
“ -~
k. z
] o
" - Lol
3 -
> o~
< -
Z
~ ~ 7] Zw
~ ~ o D~
~ o -4 | <~
- - < w Z
- (-4 | xno
~ > ~ (=] = DO
~ ~ = 3 -~ O Z -
v ~ = =] "2 (SR L 4
.M ~ w > ~ o ora -~
; o - - w ~ < o~ -z ~
% e L i ~ o~ D~ »oow z
g o [%] ~r Lo W > ~ (<)
3 < ~ ~0n < 'e] [EEPEN Qe W g -~ —
\ .,..u. ~ ~Z > (=} xXZ ~ ~O0a -0 — -
! e & ~o | -4 We W o~ W VLA - 2Z ~AZ
; 3] zZ ro -~ < | - AL uacx Taxw~A Z w. ~o
m = A o nw ~ [} wd 2x~d wi-Q ODxwv W O~AnZ
] 1 ~ ©oow ~ (&) ~ w Cwuvic <t [< i
w)] Zz an~ < " 7y 7 UYL <oz NN~ = A
i -4 = "~ ~ . 7 ~ - SZt O~ LOXECAZ wyay
: «t - X -~ w > ~ o et et 21 Z VW O2ZVOD
i 12 z < ~-~ o~ ~ P - oo omn U 2 s ~
5 Q x »>a > ~ w - ~ O W X Db dN~O A S ~~
A o < < W -~ - -a 3 o ZA - WO TR M Za il O &~
= Q “ o~ o~ e < < A XWwAdZ WX ~ —-OW NS Zwz -
3 = o - ~ <~ < e w 2 w L Ve C >D0 UA Caawd < Wz I x
o = o] w o £ >~ ~ a 1 o W RODU WU ZA —a.>3Z o> N
rm m &) Za W~ wWE (<] < -~] N Q- (=] - WEDWOO wvIwl @ %
4 ot - CZ P~ x> e | (%] ~ (%) WO WEZe A CNAZULAL S~ O Zp A~ D2
5, i .. GV o~ CcuVn (8 L&) ~ zZ O~ -wD 0 ALt A>Tl Ll A "y o e
§ < s Z e o~ 411 > ~d - ~dO A Wl -l OZVu>Z- o a2 COzxzZz vd
] 153 B2 IZe coac 1) S e S TUAAL VFZWUFWol el ow Vol OO
3 m e D Dwn ~ ~ woow= W W2V WOWT e LB WwLd> ool A »n
i - - [+ oL W wo> = o Wi WIOWX I Q9 i W Vil QWLE Z2QuUCWIViIw
p) e~ A S -1 x LACY AU ETWWF IO U OZZFIF WL ISW W2 T~
(% ~ L < < < AW oA P - W e DL WED Duadmy Doy DD) S
(] za ~ 3 ~nn (S] Il Jdw POZUWUIDLOLUNIZDEVNOUr W FIuwAWw O Wwun>o
] —~ cZ ~ « U - OO MW PFICOCLCVEZ SR WL OV mVGE~ bz oud T
& ® -0 A L Rl Z 2V 8 IO U MOmMCQUOWADZD ruo2—=0O0Dww
- - -~ o Faw F e~ c LZdlAav O Ocd 2oV LT Ful e wuxwleo oo
& © < A~ Oaw < ~ [*9) LCOON >»2Z wOar | JWOITZIAw I ZJUUlr Z2o908N0CZ
4 m o o AN A~ -~ ~ VI < > - | Ml I QU A S Mg > ENUE LSS N X mLwO s v
3 al * o=y L= A~y | W OJdANm>» QEVVVIL>»2Z> G| | FCUNICL UL Z~Cemda Al
i c i war VOV W s « \ ~ CLruuio>d Bim=uiwI aks el SSudt >-ucda>» Landy
3 << 5] . o g N~ L4 > WEIDII-O VX QU NZX F~ NLYr-r VLY rrOO2oWureXx
1 < e XY e o A n 4 e Y QW 2 Quir- £ NODDNZKCE Yo ¥ W grkerd D
1 .] == < > QAW IVNOW EXWHFOLZISWWXCOUFWNGL I O wOrFE <223 Ju
3 (0 L B Y Vel >Zan W wv o "o | O F Wl aws 2 AOLWIPWIr VXY JUIZXNwwwDIL O
* nNe xexe | DauAax] < D & e W I W00 ZW L D Vw2 —0
a. WO aao coVwagQ - 3 > AOADIX X Pl d0vius adw WS LDIHE DADNT LT
a aow (=] [V Rl <) A MO LW N OV L IOl L DO Wb SO
< e QyOtNs < L¥EO > < el wri-we Qo —Ix XX S X LI e LI v -
2 wud e Ow] %] - Vo L VB T T FILIVMALCOAwYOVLOLZFrCT XD
[=] S V- bk b= W O e < (=) UL DOO O W O W JWw DD N Or Ll dod b -t XD
fos | P M el 2]] LW AOVVWOUDIvYN KL AFFTOQTA Bk S L XL LTI L LA LD 2
g wib T e (=] 72} L COR oS T o I I I | tiItlttIecwDt L Dozt
= ViFmd o & S N . - L o gt ZzZua KL AV VM-S S0 WS~
-~ ooz e . Lol VIS QW UIITONW™>DV WV e T D L wwO > > > T X
~ = A -2 SA LT b i) ALk K LT I PR P L LR LS DIIANNAL AT WD
& - Pt o - TR Vel redw W s W N N N Nt N o N N N Nt e ottt N N
=1 D N0 L 2 - LSRR I, P L
b [P Y - ~ - s~ A -~ L
~s - . B - ot - - i
w [+ o o oS - &
S e - ~ -
) e T Y TRy N T SR T S e noY r Rt ool o

R Bl i S s N

- T

-

o

e N 0 A S POE 1 JE% Y AN oA . 51

BRI

S

P N RSP

.
e
e 5

™ D i o i ol o e et i o s - Shou el 2 EL§ e
” - — -
e o e .
-~
-~
~
w
a
>
-
-~ .
~ H
~
-~ -~ ~ ~ -
X ~ ~ ~ o~ o~ o
~ 2 ~ v AXN >
x Z0 < w o o nw -
oy T w o wow
oa - (] ©C cza ~ -
< > < Al Z COoOw ~ o
(S a> I zZoF a w
~ | >t - aunivwa w -y
-5 bt p fos] WwWwa 2Z = foe] ~
von -0 o “dDwn < o ~
O w o= LCOoOdng = %]
ci (%} = - >ZOww ~] = —
- - > w Q> ~ < = =3
~on <« va [t} wouw o (7] (= c
~Nwo < -~o ~ ~ @ Wi E >~ O z z
> - ~ —or v~ " |
o~ - - < > x o xTO Z A 2V~ W <= -~
&5 x v.n (e} (k2] < > AN N AT = w
(=15 o B = -z o [®] Lo AVOEA~AC o |
X 2 << v 3] 5oy ~ VLo xXWweanZ L <
N < (S ' Qa <o o - 9. >
Lt e O o< ~ = ZWZTE Lwm - 4 (&
L2 B o B g v pd - O ~ o Q O xrax<dZ N -
Twx D> o * 0 0 ~ ~ < S = DCWZWE A2 @
X W N O (30 ot | ~N 7] NFW W rZe B0 Ve
COoOaxZ O O >xXwuw» o wweys v wil2aavy wa w
vy Zr-< O - e O w B ! -~ OUIV O E-nZ 8 (=3
(=) WUOW = e &« >a ~ LVw w wniwu il o >o o
— A 2T < > -5 -~ e < =X 4
M @ Za y O - o ~ |~ “©i wE (O
e x Ow ~~— (=} w ox Tz U =O v
<VIDuAW oo ~ T~ 3 W - Z o - 4
Lo oS W S NV Y T ~ L d b=~ | o < 4 W i O= o
i~ > ~ ~~ N Lt e e~ w Z WO N~ g "o ~o
- PN AN o~ 1) ~e~ D~ (4] ~> (=) o <0 W
OVA L Z22 A~~~ ~~ VDA AN A X ~ (g eY. 4 ~ o 3 v
IV KT e VDA D A e la e P | < Wit ~o L~ e
b= LM ad WD s A VI o< AA~Ax - N -~ s xw T~ ZA -
o O ~ VIt o~ NI A 2B NX XL < ~ -3 ~E N o sl el [e
Xl W Al AvE UAvs A (=] v e o« © -~ wwe.s & ¥ o
- fo L L rm v A AV D AN X S - daS V> > < Z
Ll T RS LN UAAA A~ GVAA~AANY a F b 3 Jd2 [S1Eg ey Pl |
I O X DU AArD AN Vidd MmOV o * < <« DO ~Z e L=
Vi~ — (2]) - ~ < 5.,\&[.1!\\}1&((“ [(=] - - D X < -
A (=] e I S et A o] o < -~ N Nt = wWOwn V)
D O samuN L ~ N RO ~ <~ . W N e ~ Cu
P e e D WA A AAREAN QWD D 1~ - zE 4 - >
LIOONND AA Ak AOYULUOEPFE AYOVZ26 G ~ < = wowWwo [eege g o wo
Qhuwvwud FrAE A0 (%1% %] A A A < N x o wunx TO ~ o aw
P L e - @~ L AT N (S N N ~ ~AOOD > wOo e e Z Ox
<< WL N N (D I N N 19 = b 1% - (9] NV~ ~ &
X~ A Wl W U e s A ra s TN O~ 2 ~ LN Lo L= e) o
ad [B wl Nt L s 4 (o] o —_— - <O b4 . Ounh 3 T -
X (=] & Wllade C Ll ™ ~ - b KR V'V] ~ D —_Ag™ T e © e
z Ww >Vadid >>200xw0 - < o w N (ol B gre] s Rttt
e W VD2 IRl Srvrs R L L st - |] T CowD . - D >CE O
—_ TvIO DL wLa” SO AL >C=0n =< < = = AV zO O 2~
- MY €A OClWe WO > e oo ~ v > w >~ oo (=3 2 e
N CVuol lwlvaes T Lt ax [d < a o e z 2r < k- @
- D I I e v N B I TS T S T I I ™ 4 - “ LRt] ohH o OO W © Dw wCca
wd L T VOOLWOVIE A EOTT) 2 Z Swewn w L L&
- P L Nt o ot N o N N N o ~— > o o Z2C il - o
-z H = = D o —se
-~ e ~ [[ve) (9 - -~ L
—_ - i) - - s
& o [I) o o =]
~ - A ~ ~ -
ok . Lodiaghd ol Y e b PRt e ot A o D i G badlhc o a0k - L tonis ot) gl L 2 3 Lo e

—_

-

T ST T PR I A

ey e

B i ac st

B ki

s

D AT DAt

st bt

A fapi s
A s R Tiar s

i RS i

106

R L T

Ceatanall oW

~
~
”~ -
-~ ~
~ - Lol
~ - L
- a -~
~ w — -
~ o o i
R | < @3
2 = = b= |
o w 'C) e
- = - s
v - 2D
(") ~ - X~
-~ ~ o ~ . -r
~ - ~> ~ ~ wn
~ w ~r > H ~~ ~ -
wuis - ~A * wo~ ~ Qa4
v~ a S ~ - - o~ -d .
[V Pe s 3 - -~ Z ~ W~ - VI~~~
-t %] fa o | > -] <~ Z AN a~s~
@“e o< @ s uwn ~- ~a .
P (<4 > & [+8 ~ w —~ Zawnuz~C
< ¥ ~s =W o ~ ~ a = TVNJILA IO
z< ~< (Ve - w > A< Svar><und
= ~Q x < ~ @ - S vz ~\ OrFwJ
< | Ow - [} > = =5 - L @™~ ao
Vi< 2 w3 < ~ ~ —~ L ~lD EALD o9
won x~ ao 7] w wvAa O ik ~- O v
© = > | ~ (&) < e 4 Swv wW» Vi o
(') i -3 ~ (2o o < ar— o Er- ~ - ~
oo ~d L] v N~ foe] < 0O W LoEA o<W x~
oo 20 ~ 3 - ~ % o (7 e AL NOWLY -
z O (SPw) < ~ L <L - —u 3 O X OV
= SN =l O3 o > - C O wiw G O
. -~ <Z (& ~ wv wWE = S K OO & S Wl
- 2 [Yor a3 >o = N had o o Via-md O o (o2
wod [= ¥ we ' (o] ~ x \Z O LN LAl - &
O =] o - - - < 5 ~ aw~Cr «LE - o
~ o [R5 “ < 3 & wies T - < Q JOu - -
~ ~ D - a ~ - i - o - Ol JSwE D e
v P (epinl Uy m= w [5%] e~ Qo > = & wawm O e 3§]
(V=Y - Wi < Al <o &) -~ AL W [R %) 2o { W)
ad g Vi duvia 1o O b=~ AITDATIL W s S EAE W W W ~
- s | LICL & P (%) ~ = La - aTo>» . N W w2O O ~
o G DD Wi & [WRSPEN QOO @ W £ © ~2 L o -
= < s ROV ~L (] [e NCW O TIAO X R S 7Y g o
< ! Vi o N v (=) 4 & "vwdd =M 2 & SV AZO [T) c
< <L - o b < <00 O Locxwo ¢« 2 wAC 2 w o
1 v U VA S ~ QX OXOC>™>aY 23 ~ Jda wAuag £ OvA x
<O 3 DD oo [} 2w DL - O mZ oW ~ & o~
L2l X ZxE Yy~ AR -3 ~ Eorte- X DA R hdd - PO 'O W Qo B
[] ~ ~e 324 i s o = e G = uisi- VU SL 206G e~~~ T
| oo i e VO & E ¢ o ~ - K - ad N o e VN O &g » D
e -~ o b ~ Wadd Wy ST J S O —Jdd =
[l 2 = G} O L A= ~ e~ >0 INeg N wd W sl { o P8 | e e]
— & - { ot Lo ol @ e s\ Lage? ot Bl & o SR © } VoD Vi —
v~ Z QuiuiC O = [W SOt 2 < ~~ ~ ~
[L = X7, 9 N} OZw <) <3 ETLTOOZIO0 v v S - N
~ - V) ot ot o~ = < no D ODX dOLL W ol -4 ¥
S o~ W o %] (%R~ O ONVNOLVImGYE ~ [o <
B s 4 fas) [N — e 8 Ve o = wo =
~ LA Mo O o ‘.... ol VOIO AT T i a2 - ~ e
o} SO & 1 2 O e e LI DO o X
< oC .4 = - - a2 o - e e LN OO b S <)
L=, &b D W > o - O L i -
- [P S - - (£9] e o NN S o
o - V) - 2 o) v
o o =Y o o =Y o
- ~ -~ L PR ~ ~ ~
B B R W S Rt g e e s Y Y AR Y T A e R S AR P S 1 Y S P A S S
. .
s S i
e e e G e e

D
A BT Ty TP T W T e At i > & S

B

L s o b A o

e N . e SRR

-
¢
-~
2 {
=] H -
- -~
w ~ 2 M
7] -~ ~ ¢
o ~ ~ ~ !
~ ”~ ~ ”~ 9
. ~ .~ ~ ~ i
-~ e~ X ~ -~ 4
(-4 ~ ~ ~ ~ m
o ~ ~ ~ ~
> (v} -~ < > ~
w -3 ~ -0 ~ b
~ < ~ - o >
~ - = < w
() (-4 - vow o «
W a . W - ~ < »
Q. ~ ~ (&) . ® O ~ ~ o ¥
(] N~ ~ e = ~ W ~
v -~ - - 4 w o ~ - ~ “
- wo - < a (7 Y w O v W
b o« . o o @ - D - -
- ~ < - @® ~ W w o w o 9
o O e - = > n -\ - D -
el @ X - < ~ W - - o ~
b ax o - d ~ x J . - - A ~
Mu- o - o~ > ~ - - ~
o axo [T s i o e
g = ~ » > Z A~ 2 - - - o~
< Qe o~ & e & AR & e ~ > .~ :
9 L O & e B (%) - T o = -~ V¥ o~ 3
.m NS E~ Al v o -~ -~ — ~ - -
Lan~ LR B g (72 [P 4 X w ~ x J
pe -] O T~ AU~ %) xzZza € - @ o~ -3 =
e QDL ar~ W < ~ ~ ~ - x < “w
< Ve LW ARy @ ~ LN <~ (% ~ o~ > vV~
]’ L 02 <« el ~ o~ - o~ ~ - @~
o QL zZ -~ O - IR R i L v rua & =" o~
~] S wxwn - Qnw a o EO - Owa o o~
< - e 4D 1 & < . [o - s e) o —zEra
=1 - o~ WD O e <OoOn <o . K-z < @ JWO
o Lo aw OV o o~ ~ O~ ~ v - < »n > ~ O 4
s > Ex~AD Y] I~ NN - w - e Lo T R - T 4 5
P -0 0 Ol AW - ~ =~ - wvn . T 0 ~ Z<o i
= < e O JwAn - Ve B - no - xuro :
= OE W [T RV SRS ViZ ra e 2™ | LSS T 5 S | —~ —=wow
17 N o~ L Y A N (%) e -l "o e - - - ax i
- i [(T e g ~ - ~ DTSR e ~ - A= & - iAe. ~ < W~
— (VoA) - OC Q=i ~ W e ~wO.d P - [R TN ~ > Ew o~ ’
~ Ca L S o I 7 | - 20 - -0 - < U~ C ~] e~ 3
LN -~ > D Ay X o VIS - D I - - D> e~ ~ ®: & ; - :
=] L AXO BoJd & - AT W - N CoZ [T P ~ - ~o ow 3
O L A Yo o - XXy - Z XK~ Zm > > o —-End £
~ (S S ~ (% (9] - iy ~ . I e O W wad Vi
s <o o amox 2 - - e - o e - Wz ~cx < ~ arxax
.m ~ o WA GawE 1 W | o - | =2Zauvn ~n~s -> = o ¢
s b3 - @~ NLZOL—~ D ~ ¢ ar - e a - ~ QE eI _ 0 ~ -—_c3o i
nL I~ o wvwZ oz [2 o bl e | Ao~ T Vs ZO DA ~ e -y G - ¢
J & A MOLOH Lr=wd 2 mD e~ Z 2 e P e L T =X ~ [o e SN [0} ¢
< ' 2w e “LO W & P - W -~ L & -t~ Lo S I < A P Y = vi Vd Z I i
a <« N Ll i L A ~ -~y LY - D -0 - N e e ~os O &z A ..
(== oo - -~ -l - ~ N = Z - > Nk GO e
122 = N D e o N < ~ 2 2 o =] -
* ~ e nn Du >} Joo cd Bl O i ao S > o X —~ o < {
= JE=- - | e v EOZr~ L o Z ZL - < T - ~ X - wozZ
- DO [afs] ~ W vi f nOw wo I o> WO] co wo DCw o S % =] -
W =3 - ~ < Quwwn wno @ LW VO (=] o czw I< e %)
O wx ~ & [a 4 g ~ DA ww [-t T - n> - ~
e oA ~ U o (=) = <\ <~ [o - fart I
L S~ et 4 w - O A < a - Q- “w oo P
~ o o 3O 29 O a QO :
<o« - (%) 2 SO0 LSOO OO z2 = o :
- 3 > - =) e Suzd D >0 S ox :
- - o —-— - Qo “w o -G -~ - vy - o £
1 ot ~ —d el P - L - - W
v o a a a o o o a w
- ~ ' A A - ~ -~ A &
)
¢
#
H
~ —— - a T STy v R e
e T A e T - e ¥ T O v s

P T A T 1 AR

T TR ¥ ; W e e s R e T o] e T " -
o ol R R

I A O s TR &R
o T T S R R RN

‘
~ -~
-~ ~
~ » ~
M -~ ~
4 - >
e -~
y =1 ~ e«
% "™ ~ ~ - o
X “w -~ ~ ~ -
@ ~ - -4 @ (&)
i - a ~~
< ~ ~ X o~ x o~ a ~ >
. - @ ~ o ~ a ~ ~ o o~ -~
4 (%} ~ o ~ a o~ o o~ ~ ~ o~ >
w - -~ P ~ [I ~ (SR - ~ <
i ~ -~ (O ~ s~ ~ ~ o~ wv -~ xa
(<3 L ~ s o~ - ~ - ~s -l o~ ~aa
F ~g - ~ -~ e~ 0V Al V AdEA~ ~an~~ >usxs
~o - < VI ~avia - ~ uva -~ v x ~CeQa -~
] ~ - - = 4O -0 20 -0 J0 a Fa<no -
u - - ~ we O x woe o x wvre O © nJddo < -
4 - ~ &x LJOZd o JS<<Zd o a<zd woodo J awn
& Dz - . c <o [- (5] —o 4 S
B wo - - @ ZU030 w ZADO - ZaDO ~ ZYEdO rax
M w2 \ - ~ a9 X0 -9 2] o 2. DO <,
X~ - D0 Ui ~ D U ~ O i DA e
g B o - ~ e~ - - - - @ Wy w ~
] ad < - — s A i e Z e~ o
i (7] (= L o~ ~ w o xE ~ Wy ~ O e~ v -
. [P - - W wEA~L A T | Z v a - - x Zz
7 Wi ~ -~ \ < - - (=] Ll (=] [l L ~~ < -
> © > e~ o~ O A @ a ~ [+ 4 o ~ @ LU | s 4 ~ > w
g o waa ~ ~ & o M~ wo oA~ wWS "o A~ WG ~ o >
5 — x o ~~ < < oo~ Zo “odazo o o gazO a dxwo a o w
E ~aoCo -~ (= (3] - O~ O~ [ad (=Yg g O = D
~ & - o - @x o o axa g xxo - xXIO - - A 4
4 < s - < ~ [<¥ S L P} P L | - acea v cood)
i o o (& -~ oo oo W O e O O e *
S w o *® < W L O Vi wo o Vi v~ O o S L < | o
i - - wo - T R o oo o wor - - - a -
3 Wi~ & < < O ad™ ~ Erd ~ ~ AR Cu - [
X W < (=) -~ d W S wn O ww = 4dDFk0n x w v
~ o~ « * w < Downw ~ ~ rouUw ~ Faouw - SOCWww w & W
A= ~ ~ - ~ Zwo - E Qo ~ EF Qo - ZSun o
~d [«8 P et s w PN N - et o~ N D " <
1 AR oo ~ a ——s wd AN v —_——~ A & -
H Vv [STSEN < - A~ ~ - - A - ~—— <
-~ ~ T L £ u~uno -~ ~ Jduoauno > D
<L <L ~ L LT e g e = Jz L o O S g ~Zo
~ wua - 4 L g B O - 2N O o TN D L > xor
PR A 4] Q. ~ [t SR P 1S] b o T P LS} [Lo N RS P S e Ccoo
[P G P b3 A AN P o T AN - L <4 i)
~ A Goe wi (=) -t O rip= X N O W
2 X - z PIZI 3% —“Zng a czZua a —Z0nv o <o~
& e pee) ¥ Jauo w Jdouvo - dCOO - g SO Ewony
o a (-9 (=) [R L=t G Lo W Voo ~i dOQ -
X e e o o9 ~rrod | 8 ~xd [== g T Zr X G~
Wi wd = =z oo & " VOO o 100 o wo oo Ovi
S Yol =9] Gr-Ow O o Ow (ST oiedd oo o
% % o - ool [O ee s (PR LS o) edazy
e o & V4 - SO o e V) E e e W) e - N 1
d SN N =z < i S e < V) N W e O~ w
S > ¥ [Ya] @ <o os o a
oS — —cs —0 -0 S
= 7 < o P ZwZ LW ZwZ 2O
S0 p=} ol 2DNO VD =2V SV o S
) - [- -—ouv oo oo oo “c
d - = d -t e~ - -
o o (=) o o (=3 o =
S~ - Nt e ~ A o A

it Siaine i L b e et s e T T T e ey T

T S © R I AN YA G BTN S e T T MY RN S SR TR Ly A i TR e S A Sl M OIS S Bl B RS ¥ pens - €3

w, ._
3 4 o t
~
_ ~ ~
”~ ~
3 > -
4
- x & v
N ~o <
b, ~a o
Fa ~ ~
w > ~ €
3 Vi~ Z ~ -~
= e . [> ~
3 e~ O (] ~ ~
b O~ - x >x -~
A W < ~ ~
g @~ & ~ xo ~ ~ ~
Zan~ N o~ <~ a ~ ~
- Y xaoe o~ (&) ~O ~ ~ ~ > m'
3 wo - (&1 -~ ~C ~n - ~ 1
2 b= O AN = rd p— wv ”~ i
Zow e = X [« 3] v ar o ~ ~ ¥
i - o4 mOow -a —o od . e ;
-o ~ X0 ws O wo « ~ ~
E z uN @ w A wwn < ~ = > ¥
3 ¢ -0 ~ =) Vo ~x L ot ~ v €
. (%1%} -~ aung (%] - D~ @ ~ ~ - > 3
3 b, r—— - OZOA~ — —— w ¥ ~ -
6’ - HKADOw~ wda & i N~ Z > ~ @ > b
& ~ WL ~ — o - Zalal ~ ~ & 3 i) [} t
3 vttt i -3 ~ ~ Z~d b=~ ~ ~ o~ b (=) . §
3 i & XK - ~ ~ -5 >N~ ~ o~ lalatal w S
X < W ~ ~ ~ o PN weda o (SRR % ~uj~ [(7] L o
i o “ o - ~ ~ < ——~o x © - O Lo - | w ~ ~F “ i
X b —vaxez = = ~ o —x O =0 -0 o « -~ -~ - -
< A8 co 2 -~ w " < - Z ©) c > - > «
3 o0 > A~ o ~_J Zo = -~ = 7] ~ w
VI - ~ Vi~ (=) o aw O a < Z~ - o -3 -l 4
¢ L b -~ (1.9 - ~xwn b] 2 O -0 w (=] o > — ...
- - < ZO o < —Z~ e Do - . o &c o w >
‘ { ~a o =Oo > (%1% e [**) -~ - - [=] -
A - - - [*¥) -t W~ & o~ w ~ - “ (S Y m
o) ao 1. »n ~ - - o~ ~ o~ & X~ w ~
i Zzo o< @© AT N - ~a ~ — - ~ - ~
(=2 d ~d <O) —Q ~ZO0 ~ un ar > - w ~ w
5 ht T~ Dw w - O - ~on ~ (] ~~ - 1
. > ~ w x<V W w) ~ - - -
& oW \ &x O~ - X ~x o ~ ~ ~nV ~
5 Q.- o o e iad -3 ~o ~ JAdxXx x > ~—
5 o o x - Frw o - - -~ ~r ~ - ~
; (=10 F4 O ¢4 va Q™ QWi w Emo > Ndx L >
-d—d ow (%] - ~ =2 ~ - © w o o ~ - <= :
1 N - Za. -r ~Oo & aunir 2 <« - - x x ~AOO >
wa o w wun; - waown ¥ aGQwr < (=] (=] Er-w b d
A Q.<< ~ [otd ALK L d - wwn < < -3 ~e - "
b G~ < (%] Lol o - © [| x = L ~ g~ —dE WV o
4 < - xa. ndacao w avoe d < < 4 b B o S x 3
& bt -0 —So T R S a o a Y = -~ O £—~0 o
.. -4 - wNHNOWW - oZw ©w Z - o o Z -0 <
. @ | wWwnn [T] o O w a o - fo o } Sr0Ow = S
w o QL ww DA~ w Qv (-9 - (%] oow IITw
5 - &~ —— as B W - o - o - =] :
1 z s & o < Qo < 2 = - wa - [d
1 — - 20O T «® o [-8 - Q & DV < =z t
: 2 (251 531 20 S< a §
5 | = O Lk EX d Faele] 4 - = < Mod 4 = £
K} 2 Sx Da 24 po 1= g | 2 - 2 =S«<a =20 =
- N9 -~ -~ [N -8 - - . w3 - - .
St - - e~ e - - B - -~ - e
e, o o o a o o o =) o o -
- A ~ . ~ L ~ ~r A A S~ A d ”
' :
i :
4
S e ol B o = v T T T S I

e e e

e 2 ST o g

p—

N N I SN

{ ‘
-~
4 ~ ~
q ”~ ~
| —~ ”~
i . - ~
y ~ ~
-8 -3
R -~ (=1 -
4 ~ ~ (=} "
b o ~ - ~
o > ~ @ ~
; <4 ~N o o ~
(g - < (=] N~
3 -~ (%] w ~ ~ -
{ ~ ~ %] i~
T -~ ~ ~ ~ = - Vi~
1 ~ L - ~ ~ ~ Z - ~
3 ~ w] ~ - - O W o~
~ -l asd -~ - (%] -4 w onN
: > @ ~ ~ ~ w] - 2z [
b [- 3 po- 3 ~ ~ - w o~ | o - ~N W
> Qs (%] ~ - o~ (- 4 o ~ v o x ~ |} - %)
@ i -t o o “ ~ o - o & u T
1 - o~ o - (=] o ~ — o~ W wl x 7 I Y 4
< ~ ~g = (<) (&) ~ ~ we o “w = <o R | e
* o i -~ < ak -l - - Vi O o~ z o LR, &
=] o~ ~l ~ w (7] o ~r w o = ~
L < N ~ o o ~ J - e~ Vi~ ¥ O o ="
. - > ~ (%] ~D - ~ O~ —-nd -~ i b
ZLd x~ Ll ~~ [- x @~ L~O - - -
5 - = [< ~0N ~ x & <~ —EA~AD w o W~ < @w
: (%] ~ ~a wn Q@ A~ A~ o O S (TRl d = > -~ x =un
4 L ~ = - NG ~ ~~o VI - Za W Lo - - o
@ -4 ~ ~o 22 X ase an~ ~ ~ O Dwis owm D - a Dr
i .w ~ ~ ~~ a> - Cc - Z k=~ [Sdzo v v -~ -~ o wvo
1 b o - Dui~ W OnL A~ N~ —~ig - o~ Vi D ~ <
& - o O - ~ L~ Je—0 =0l oo~ - =D -l < L7~ Voo od @
H o a -3 W - wes = A A -1 -0 - - -~ << W oA
4 < 5 < cav Ot s~ @ e T O z oo 7o o)
¥ Al o o o I UAOAXA O QxDd & x~ w 2w Z~ ~ -2
3 Lpd os oo Cw Ldw OJd voe ~ DOw o~ [T ¥ & wen
4 - < (S Jeo } ~~D ~ QN - DN v ~ ey - -~ < @ =S @ Ll o [
; w b - v AL ZAg Z ~Z [LYoy caqxZo oo ——
- e . [e U VO ~—D @ XA X wown - ~
-~ ~u ~~ ~ v A 2T ~ U S Y Dw - ¥4 4 e} ~ tury
Sur xQD ol -~ Owo L dxL <X - nJd o == w ~<Z Tl ol o
3 | Mg ~w v SDDo coadc Do wee S L - o~ AO W ~NZ &x e - duiw
! ~ - - - W e w o oW -4 - [I R 4 NI X~ O - w v
4 - B = e w A JLC WaLO W CAzan S od xao [™) ~ WV wZ
Q- Txx D e O JF X JF X —eod O Wi - ~x xo
> ol << (7 e L, o D W~ D s 0o = (&) w ow £ O Lt el 43
~ a ~OO DD g~ QUNZEN ZEN NI & W Jdw a o ~Zwn ——~o —do
& wv e~ W ZX s G d o o T P I P -l - - o - -2 - -~ o] o d
“ o =2 ~n D w0 W W o W AN - DEOV -0 W o ~ -0 i
[+ -0 ~Jdaxuv ax wnnoc -~ 3N v Tuwad wWow » i - L g LAWY
(=] <9 w2 »- o [l o~ = =) N N ~ < [4
w < b d SO (%] Qo0 Jd <aqv— 2 prd G e VI WO e <0 X -_—u0
4 4 e b ~ - QDD . o *t Nz w - o ~ o [Rele} oo
i Lo pg R 4 S o ~ O “ I Lo C - oW -0 < [<
- ox W ¥ Z LU Qo ~ WO - e 2N wo -t @ << [
! < X o L > S v Caw wd -~ S~ -
P a O p— = ™~ dILnND AW W fva <~ O D~
3 (<] (&% - Vi SDwoa a o = N o~ —— (") o>
g w O Za Z a o OO (=4 Zow W < ~~ i z oo wa
& z << e - 4 ~OO woewxo o =2 waoo S =z z
§ (5] oo Zo - 1= Q0 Z3 =0 = QO ZO
< & 2w 2« . ZOw zZ Z2xo pote) oo = P
5 = 29 D~ Da. S >0 oo d - - -~ -’
H - - — (v - - - wa [(%] (%)
S - g -t e ~ ~ - - el - — e -
: o a a Ay ; a a o ~ ~ - o~
~ ~ ~ -t ~ '3 ~ ~r
A

e TR

B]

ST

i i £
2 1 ~ ~ w
; ~ ~
i a ~ ,
: = ~~ o «
Q ~ [%] ~ = e
o ~ ~ uva ~ ~
« ~N L tatal s P4 ~ -~ z
- AVIAP— -~ ~ ~ @ w
- 7] vian @ - ~ -~ ~ > g
[- ozZo o (7Y ~ t o~ -
- - e g I «d > ~ w
2 ~ ~ O WS A ~ ~e (<4
i ~ ~ e o -~ A -~ «© ~ ~ ot N
H [-a ~ - O <A~ ~ o - Z2
g [S I 3 z O ~N AN O (WP ~ “ Wi ~
- W ~ —AdZw oJ ~ ~ o~ a ~ i o
ks b~ 3 ~ ~ N0k ~ ~ o o ~ wvn .
- ~ N o~ P INEL o o~ ~2O o W ~ ™ !
V- N - A Ao O - —~x O - ~ - (A0 ~
H -~ Jd - O v N L vi -]] = ~
-2 VN W O VI xAne ~ Ll Z - o v b 17 1% ~
oawv W 2 LERC I AN e o 3 w ZZ =i ~
[Y — - de oo [V7 ~ TaxO ~ w x ocC o - :
Zowx ~S M DPO~YUO o~ @&n @~) o -8 (S %) > v
- T - A " 4 T < - "~ < N L 2] - w
9 -0 AW A N W O lalal ~ ~ @x ~ ~~ £
et ~ Tz AVOV wElow W —-Z > e > O Crn ~ @ ¥
& e ~ OXDw NZOw rmrFOO0JO ~ ~ X o ~ SO Z~ o {
1 - - wa ~ Viwad VNN IZ AT A ~—nwv < ~ - ~ a e £
4 - Tawi~A ~ X A LA AID AL XAy el o P53 W oAxax <= ~ H
P G P~ «an ~ LT SPraalrl Oz oAk~ ~ N SO -C £
W QeI -~ > O~ ~ N Quw Junw o ¥4 & - Lo W - ¥
QO i x = Lo o Lo 4 e nado ~ O~ < Vi W v L
S arw > Ne) Degeriar &2 - ~ou > <A (%) T wn ~o F4 :
- [l - v AL WAL ZW Oaw -~ o~ o A~ ~ o - o © %
w axad z Vi W 23 QN VW Zxx -~ -t L= T < QWi (-8 z n
4 - W e [wwa U W~ v Sa o~ - - oD A~ w « ~N wv ~ b=
WZI O FrEX @~ wDOoU A~ oS5n = N O Srmm A~ ©
2 - - ad -~ wo (%) TA(()) = d ¢ o« [ST N w ~ =
: VN QT w ~ —-—Iruy AXO0CO a, ~A~ ~ - wD " Z2wIx pr g ~aa L
m - WEVICOA z Nk Vv g & dxd~ - o o e w ~wrac ~\ e v
¥ el d ol o lel [+ 4 X D OO ~ Lid e Q. ~ e Wi A u T ag et v
i UV W w CZL e~ WVVvENNO Swuzo —oaiw ©®“Cc « -3 Qv @ - & d £
£ —r 2N - SwEr W e -3z O wzdu QO =~ e < ~AOY axz
4 Vi Ow D = S e ~ o Z - S ~ ~~ OO~ - Z o= ~ax
4 xza O o - -l w ZZ [(WIW] e ~D O~ Oox <
- 2 @ W W - - Joa w20 - O v x ~ Fe wa ~NNo
“whg Q (-3 " an —EZ -2 - o & dn ~ o~ -0 ~ Lo b 2 d
| i & ~ WO 2DwO X W~ -a e xuv]] 4 w o
o o | Z ~ D2 2Z¥NO L= B ~ 0o <o w 2 NINE D wi - ST .
-V (-3 O N ~ c 2 & NE —— o - JCJ
Qwd 2 = WO e . ~ ~ N oo oo vn o -o bl =]
<@~ - > > D © wow [TIXw Zzd —S T2
] WIS w n -~ -a c~) we aao w — 3
1 & o x —-OoLt 2 (% ~-C - < Q< - o~ Z oo~
4 BOw - w & QOO w N - X~ -3 Z~ o
3 o z Soxoow O = wv - (LN - Zo
4 =X Lo d o [l a a S =4
4 oG =2 ZOw L Zna za 2z2 20 F-
. -~ > S D D~ 20 = =1= Dx S :
o [} - e [- J - - o -l L o
» - e - - - - -~ e -t el .
~ o o P~y c a aa a a 2
-~ - -~ ~ ~ o A -~ 4

B o i e P A

s L S

~
~
~ ~
~ -~ -~
~ -~ ~
~ o> o~
~ Z A~
~ - o
-~ £ w ~
- w ~
(%] w ~
- o w ~
L= - ~
& - O 7~
o R]
(%] b3 a ~ ~e~)
~ w X o~ (7 Y™
- ow v >
- ~ < <.
- . @ S>aax
2 % LU >0
(=] . ~ W
~ x v w W x~
L el < o &<
- ~ o Z O <O~
~ -~ ~ O O 4 >wn
-~ O~ BV S T x
- Comnm O - X -l
L] ~ ~ OOAAODC n w >
-4 ~ E OOV VI N - =&
o - OVY 3O w n a0
x z - S 202 @ W e >
< w - OUZ O @ N ~w 9
ot o £ S Liwss s ¢ [2
~ a S ~AVE ©c £ 0 <
< C r v ©C == R S i
Lad ~ T w e v O O FEwn
v - arlwuwzZo - W < -
- wd DAZZwWOoOWZ O ~ n>nd
- -t A Zee I O ad <
- = P LHA g - Z W L~
EI O« @ ™ 0 S>Snow
a o= WO DEDY - X ow ~ A
4 (1% VO Cwoa v - & <« <
w Y DS LA AN L ~>ux
a < i X DwAE 7 I
a = WD XTIODE WO —JdO
< i LU L ZOLID O UL LA -l
had o E A X ur O T i E i~ <D~
vz MU RNEZENIE OV - {4
[od < [l - = e~ W
e = »waoococooozozoZZAa WU
9 L o ol ol ol ol ol ol el e Rl <
Lo GO0 i i W LW X W o X Zzo
u O AVIDVVINAWAVIGL L r 2
- L (I N NI N N Nt N N Nt -t -—
24 Da pe T]
P LSS L
e - —-—
[=} o S
~ ~r ~
s e e 8 e O G YT e

it < e

S

R el R

..waﬂ’w Bladdelete o 0 o a0 LS

